Algorithmic randomness in harmonic analysis

Diego A. Rojas

(Joint work with Johanna N. Y. Franklin and Lucas E. Rodriguez)

Sam Houston State University

June 19, 2025

Computability, Complexity, and Randomness 2025 - Bordeaux

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ ↓ Ξ り へ ○ 1/23

Outline

- I. Introduction and Background
 - Paradigms of Randomness
 - Computable Analysis
 - Algorithmic Randomness
- II. Harmonic Analysis and Algorithmic Randomness
 - "Almost Everywhere" = "Random"
 - Carleson's Theorem in Fourier Analysis
 - The Dirichlet Problem for the Upper Half-Plane

・ロト ・ 日 ・ ・ 目 ・ ・ 目 ・ の へ ? 2/23

Future Directions

Part I: Background

Algorithmic randomness: The study of random individual elements in sample spaces which pass all effectively devised tests for randomness

Three Randomness Paradigms

- Incompressibility (Cannot feasibly compress a random sequence)
- Unpredictability (Cannot win against a random sequence in a fair betting game when using a feasible betting strategy)
- Measure-theoretic typicality (Random sequences pass all feasible statistical tests)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 4/23

- (X, d, α) : Computable metric space
- ► (X, d): Separable metric space (often complete)
- $\alpha :\subseteq \mathbb{N} \to X$ is an enumeration of a countable dense subset of X

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ⊙ 5/23</p>

• $d(\alpha(i), \alpha(j))$ is computable uniformly in *i* and *j*

We call each $\alpha(i)$ a rational point of X.

 $(X, \|\cdot\|, \alpha)$: Computably presented Banach space

- X: Separable Banach space over \mathbb{R} or \mathbb{C}
- $\alpha :\subseteq \mathbb{N} \to X$ is an enumeration of a countable subset of X whose rational linear span is dense in X.
- For $c_0, \ldots, c_n \in \mathbb{Q}$, $\|\sum_{i=0}^n c_i \alpha(j_i)\|$ is computable uniformly in $\langle n, j_0, \ldots, j_n, c_0, \ldots, c_n \rangle$

We call each $\alpha(i)$ a *distinguished vector* of X, and each rational linear combination of them is a *rational vector* of X.

 L^p spaces may be viewed both as computable metric (Polish) spaces and as computably presented Banach spaces for computable p > 1.

As a computable metric space: $f \in L^p$ is L^p -computable if there is a computable sequence $\{f_n\}_n$ of rational **points** in L^p such that $||f - f_n||_p < 2^{-n}$ for all $n \in \mathbb{N}$; f is weakly L^p -computable if, instead, $\lim_n f_n(x) = f(x)$ pointwise a.e. with $\sum_n ||f_n - f_{n+1}||_p < \infty$.

As a computably presented Banach space over \mathbb{R} or \mathbb{C} : $f \in L^p$ is a *computable vector in* L^p if there is a computable sequence $\{f_n\}_n$ of rational **vectors** in L^p such that $||f - f_n||_p < 2^{-n}$ for all $n \in \mathbb{N}$; f is a *weakly computable vector in* L^p if, instead, $\lim_n f_n(x) = f(x)$ pointwise a.e. with $\sum_n ||f_n - f_{n+1}||_p < \infty$.

 μ : Computable (Borel) probability measure on X

▶ { $q \in \mathbb{Q} : \mu(U) > q$ } is computably enumerable uniformly in (an index of) an effectively open subset *U* of *X*

A μ -Martin-Löf test is a sequence $\{U_n\}_{n\in\mathbb{N}}$ of uniformly effectively open subsets of X such that $\mu(U_n) \leq 2^{-n}$ for all $n \in \mathbb{N}$.

A μ -Schnorr test is a μ -Martin-Löf test $\{U_n\}_{n\in\mathbb{N}}$ such that $\mu(U_n)$ is computable uniformly in n.

A point $x \in X$ is *Martin-Löf* (*Schnorr*) random if $x \notin \bigcap_n U_n$ for any Martin-Löf (Schnorr) test $\{U_n\}_{n \in \mathbb{N}}$.

Part II: Harmonic Analysis and Algorithmic Randomness

"Almost Everywhere" = "Random"

Almost-everywhere theorems in analysis can be used to study algorithmic randomness notions.

Historical Overview

- Demuth 1975: Martin-Löf Randomness and Differentiability of Functions of Bounded Variation
- ► Kučera 1985: Martin-Löf Randomness and Poincaré Recurrence
- V'yugin 1998: Martin-Löf Randomness and Birkhoff's Ergodic Theorem
- Pathak 2006: Martin-Löf Randomness and Lebesgue Differentiation Theorem
- Brattka-Miller-Nies 2011: Computable/Weak-2 Randomness and Differentiability

"Almost Everywhere" = "Random"

Historical Overview (cont.)

- Gács-Hoyrup-Rojas 2011: Schnorr Randomness and Birkhoff's Ergodic Theorem
- Bienvenu-Hölzl-Miller-Nies 2013: Computable Randomness and Denjoy-Young-Saks Theorem
- Pathak-Rojas-Simpson 2014: Schnorr Randomness and Lebesgue Differentiation Theorem
- Miyabe-Nies-Zhang 2016: BSL survey on using a.e. theorems to study randomness
- Franklin-McNicholl-Rute 2016: Schnorr Randomness and Carleson's Theorem in Fourier Analysis
- Many more to come!

Carleson's Theorem states that the Fourier series of a function $f \in L^p[-\pi,\pi]$, $1 , converges at almost every <math>x \in [-\pi,\pi]$. Here, we view $L^p[-\pi,\pi]$ as a computably presented Banach space over \mathbb{C} with rational trigonometric polynomials as the rational vectors.

Theorem. (Franklin, McNicholl, and Rute 2016)

 $x \in [-\pi, \pi]$ is Schnorr random if and only if, for any computable vector f in $L^p[-\pi, \pi]$ with p > 1 computable, the Fourier series of f converges at x.

In fact, they proved a stronger converse: If x ∈ [-π, π] is not Schnorr random, then there is a computable *function* f such that the Fourier series of f diverges at x.

Theorem. (Franklin and R. 2025+)

 $x \in [-\pi, \pi]$ is Martin-Löf random if and only if, for any weakly computable vector f in $L^p[-\pi, \pi]$ with p > 1 computable, the Fourier series of f converges at x.

Proof Sketch.

(\Rightarrow): If *f* is a weakly computable vector in L^p with effective approximation $\{\tau_N\}_{N\in\mathbb{N}}$, then $T = \sum_N |\tau_N - \tau_{N+1}|$ is a Martin-Löf integral test. If the Fourier partial sums of *f* diverge at t_0 , then $\{\tau_N\}_{N\in\mathbb{N}}$ diverges at t_0 .

 (\Leftarrow) : Adapt the construction in FMR16 for Schnorr non-random case, taking into account that we can effectively approximate the measures of the test components without being able to compute them directly.

The Dirichlet Problem for the Upper Half-Plane goes as follows:

Given a function f defined everywhere on \mathbb{R} , is there a unique continuous function u twice continuously differentiable in UHP := { $(x, y) \in \mathbb{R}^2 : y > 0$ } and continuous on ∂ UHP, such that u is harmonic in UHP and u = f on ∂ UHP?

If $f \in L^1(\mathbb{R})$ and, for each $(x, y) \in \mathsf{UHP}$,

$$P[f](x,y) := \int_{\mathbb{R}} \frac{y}{(x-t)^2 + y^2} f(t) dt$$

then $\lim_{y\to 0^+} P[f](x,y) = f(x)$ for almost every $x \in \mathbb{R}$. We call P[f] the *Poisson integral* of f.

The Dirichlet Problem for the Upper Half-Plane

We now view $L^1(\mathbb{R})$ as a computable Polish space with compactly-supported piecewise linear functions with rational vertices as the rational points.

Theorem. (Rodriguez and R. 2025+)

If $x \in \mathbb{R}$ is Schnorr random and $f \in L^1(\mathbb{R})$ is L^1 -computable then $\lim_{y \to 0^+} P[f](x, y) = f(x).$

Key Ideas

- To prove this theorem, we need to find a convenient Schnorr test that has nice properties. Since a Schnorr random point x avoids all Schnorr tests, we have creative liberty to find the Schnorr test that we want.
- Once we have this Schnorr test, we take advantage of the L¹-computability of f, specifically its approximating sequence.

Lemma 1. (Pathak, Rojas, and Simpson 2014)

Let $f \in L^1(\mathbb{R})$ be L^1 -computable. Let $\{f_n\}_{n \in \mathbb{N}}$ be a computable name of f. Then we can find uniformly Σ_1^0 sets $\{V_k\}_{k \in \mathbb{N}}$ such that the following statements hold:

1. $\lambda(V_k) \leq \frac{2+\sqrt{2}}{2^{k-1}}$

2. The sequence $\lambda(V_k)$ is uniformly computable

3. $\forall x \notin V_k$ and $n \ge k$ we have

$$|f_i(x) - f_{2n}(x)| \le \frac{2 + \sqrt{2}}{2^n}$$

For all $i \ge 2n$

Lemma 2. (Rodriguez and R. 2025+)

Let $f \in L^1(\mathbb{R})$ be L^1 -computable. Let $\{f_n\}_{n \in \mathbb{N}}$ be a computable name of f. Then we can find uniformly Σ_1^0 sets $\{U_k\}_{k \in \mathbb{N}}$ such that the following statements hold:

1.
$$\lambda(U_k) \leq \frac{3(\sqrt{2}+2)}{2^k}$$

2. The sequence $\lambda(U_k)$ is uniformly computable

3.
$$\forall x \notin U_k$$
 and $n \ge k$ we have

$$\int_{\mathbb{R}} P_{y}(x-t)|f(t)-f_{2n}(t)|\,dt \leq \frac{2+\sqrt{2}}{2^{n}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Lemma 3. (Rodriguez and R. 2025+)

Let $W_k = U_k \cup V_k$ where U_k is the Schnorr test from Lemma 2 and V_k is the Schnorr test from Lemma 1. If $x \notin \bigcap_{i=0}^{\infty} W_k$, then

$$\lim_{n\to\infty} f_n(x) = f(x) = \lim_{y\to 0^+} P[f](x,y)$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ○ へ ² 18/23

The Dirichlet Problem for the Upper Half-Plane

Theorem. (Rodriguez and R. 2025+)

If $x \in \mathbb{R}$ is not Schnorr random, then there exists an L^1 -computable function $f \in L^1(\mathbb{R})$ such that $\lim_{y\to 0^+} P[f](x,y) \neq f(x)$.

Key Ideas

- ► The idea is to design an L¹-computable sequence of functions that converges effectively to an L¹-computable function f in the limit.
- ► This function will have the property that the radial limits of the Poisson integral will blow up on Schnorr non-random points x while f(x) is finite.

Theorem. (Rodriguez and R. 2025+)

If $x \in \mathbb{R}$ is Martin-Löf and $f \in L^1(\mathbb{R})$ is weakly L^1 -computable, then $\lim_{y\to 0^+} P[f](x,y) = f(x)$.

Proof Sketch.

Three ingredients: (1) Poisson integral of compactly-supported continuous boundary data fully recovers the data; (2) Poisson integrals of $f - f_n$ converge pointwise to 0; (3) $f(x) = \lim_n f_n(x)$ for every Martin-Löf random $x \in \mathbb{R}$.

Theorem. (Rodriguez and R. 2025+)

If $x \in \mathbb{R}$ is not Martin-Löf random, then there exists a weakly L^1 computable $f \in L^1(\mathbb{R})$ such that $\lim_{y \to 0^+} P[f](x, y) \neq f(x)$.

Proof Sketch.

Fix $x \in \mathbb{R}$ not Martin-Löf random. Then, there is a universal Martin-Löf test $\{U_k\}_{k\in\mathbb{N}}$ such that $x \in \bigcap_k U_k$. Without loss or generality, we may assume $U_{k+1} \subseteq U_k$ for each k. Since $\{U_k\}_{k\in\mathbb{N}}$ is Σ_1^0 uniformly in k, it is possible to compute an array $\{I_{k,n}\}_{k,n\in\mathbb{N}}$ of rational closed intervals such that $U_k = \bigcup_n I_{k,n}$ for each n and $I_{k,n} \cap I_{k,n'} = \emptyset$ whenever $n \neq n'$. Let $f = \sum_{n,k} 2^{-k} (1 - \mathbf{1}_{I_{k,n}})$. Show that f is weakly $L^1(\mathbb{R})$ -computable.

Then, show that f(x) = 0 while $\lim_{y\to 0^+} P[f](x,y) > \frac{1}{2}$.

- Look at computable randomness and weak-2 randomness in terms of Carleson's theorem and the Dirichlet problem for UHP
- Study randomness by looking at weak solutions to PDEs, Sobolev spaces, and harmonic analysis literature
- Toward a meta-theorem concerning a.e. theorems and notions of randomness

Thank you!

< □ ▶ ◀/卲 ▶ ◀ 壹 ▶ ◀ 壹 ▶ 亘 のへで _{23/2}