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Part I: Background
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Paradigms of Randomness

Algorithmic randomness: The study of random individual elements in
sample spaces which pass all effectively devised tests for randomness

Three Randomness Paradigms

▶ Incompressibility (Cannot feasibly compress a random sequence)

▶ Unpredictability (Cannot win against a random sequence in a fair
betting game when using a feasible betting strategy)

▶ Measure-theoretic typicality (Random sequences pass all feasible
statistical tests)
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Computable Analysis

(X , d , α): Computable metric space

▶ (X , d): Separable metric space (often complete)

▶ α :⊆ N → X is an enumeration of a countable dense subset of X

▶ d(α(i), α(j)) is computable uniformly in i and j

We call each α(i) a rational point of X .
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Computable Analysis

(X , ∥ · ∥, α): Computably presented Banach space

▶ X : Separable Banach space over R or C

▶ α :⊆ N → X is an enumeration of a countable subset of X whose
rational linear span is dense in X .

▶ For c0, . . . , cn ∈ Q, ∥
∑n

i=0 ciα(ji )∥ is computable uniformly in
⟨n, j0, . . . , jn, c0, . . . , cn⟩

We call each α(i) a distinguished vector of X , and each rational linear
combination of them is a rational vector of X .
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Computable Analysis

Lp spaces may be viewed both as computable metric (Polish) spaces and
as computably presented Banach spaces for computable p > 1.

As a computable metric space: f ∈ Lp is Lp-computable if there is a
computable sequence {fn}n of rational points in Lp such that
∥f − fn∥p < 2−n for all n ∈ N; f is weakly Lp-computable if, instead,
limn fn(x) = f (x) pointwise a.e. with

∑
n ∥fn − fn+1∥p < ∞.

As a computably presented Banach space over R or C: f ∈ Lp is a
computable vector in Lp if there is a computable sequence {fn}n of
rational vectors in Lp such that ∥f − fn∥p < 2−n for all n ∈ N; f is a
weakly computable vector in Lp if, instead, limn fn(x) = f (x) pointwise
a.e. with

∑
n ∥fn − fn+1∥p < ∞.
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Algorithmic Randomness

µ: Computable (Borel) probability measure on X

▶ {q ∈ Q : µ(U) > q} is computably enumerable uniformly in (an index
of) an effectively open subset U of X

A µ-Martin-Löf test is a sequence {Un}n∈N of uniformly effectively open
subsets of X such that µ(Un) ≤ 2−n for all n ∈ N.

A µ-Schnorr test is a µ-Martin-Löf test {Un}n∈N such that µ(Un) is
computable uniformly in n.

A point x ∈ X is Martin-Löf (Schnorr) random if x ̸∈
⋂

n Un for any
Martin-Löf (Schnorr) test {Un}n∈N.
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Part II: Harmonic Analysis and Algorithmic Randomness
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“Almost Everywhere” = “Random”

Almost-everywhere theorems in analysis can be used to study algorithmic
randomness notions.

Historical Overview

▶ Demuth 1975: Martin-Löf Randomness and Differentiability of
Functions of Bounded Variation

▶ Kučera 1985: Martin-Löf Randomness and Poincaré Recurrence

▶ V’yugin 1998: Martin-Löf Randomness and Birkhoff’s Ergodic
Theorem

▶ Pathak 2006: Martin-Löf Randomness and Lebesgue Differentiation
Theorem

▶ Brattka-Miller-Nies 2011: Computable/Weak-2 Randomness and
Differentiability
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“Almost Everywhere” = “Random”

Historical Overview (cont.)

▶ Gács-Hoyrup-Rojas 2011: Schnorr Randomness and Birkhoff’s
Ergodic Theorem

▶ Bienvenu-Hölzl-Miller-Nies 2013: Computable Randomness and
Denjoy-Young-Saks Theorem

▶ Pathak-Rojas-Simpson 2014: Schnorr Randomness and Lebesgue
Differentiation Theorem

▶ Miyabe-Nies-Zhang 2016: BSL survey on using a.e. theorems to
study randomness

▶ Franklin-McNicholl-Rute 2016: Schnorr Randomness and Carleson’s
Theorem in Fourier Analysis

▶ Many more to come!
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Carleson’s Theorem in Fourier Analysis

Carleson’s Theorem states that the Fourier series of a function
f ∈ Lp[−π, π], 1 < p < ∞, converges at almost every x ∈ [−π, π]. Here,
we view Lp[−π, π] as a computably presented Banach space over C with
rational trigonometric polynomials as the rational vectors.

Theorem. (Franklin, McNicholl, and Rute 2016)

x ∈ [−π, π] is Schnorr random if and only if, for any computable
vector f in Lp[−π, π] with p > 1 computable, the Fourier series of
f converges at x .

▶ In fact, they proved a stronger converse: If x ∈ [−π, π] is not Schnorr
random, then there is a computable function f such that the Fourier
series of f diverges at x .
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Carleson’s Theorem in Fourier Analysis

Theorem. (Franklin and R. 2025+)

x ∈ [−π, π] is Martin-Löf random if and only if, for any weakly
computable vector f in Lp[−π, π] with p > 1 computable, the
Fourier series of f converges at x .

Proof Sketch.
(⇒): If f is a weakly computable vector in Lp with effective
approximation {τN}N∈N, then T =

∑
N |τN − τN+1| is a Martin-Löf

integral test. If the Fourier partial sums of f diverge at t0, then {τN}N∈N
diverges at t0.
(⇐): Adapt the construction in FMR16 for Schnorr non-random case,
taking into account that we can effectively approximate the measures of
the test components without being able to compute them directly.
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The Dirichlet Problem for the Upper Half-Plane

The Dirichlet Problem for the Upper Half-Plane goes as follows:

Given a function f defined everywhere on R, is there a unique
continuous function u twice continuously differentiable in
UHP := {(x , y) ∈ R2 : y > 0} and continuous on ∂ UHP, such that
u is harmonic in UHP and u = f on ∂ UHP?

If f ∈ L1(R) and, for each (x , y) ∈ UHP,

P[f ](x , y) :=

∫
R

y

(x − t)2 + y2
f (t) dt

then limy→0+ P[f ](x , y) = f (x) for almost every x ∈ R. We call P[f ] the
Poisson integral of f .
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The Dirichlet Problem for the Upper Half-Plane

We now view L1(R) as a computable Polish space with
compactly-supported piecewise linear functions with rational vertices as
the rational points.

Theorem. (Rodriguez and R. 2025+)

If x ∈ R is Schnorr random and f ∈ L1(R) is L1-computable then
lim

y→0+
P[f ](x , y) = f (x).

Key Ideas

▶ To prove this theorem, we need to find a convenient Schnorr test that
has nice properties. Since a Schnorr random point x avoids all Schnorr
tests, we have creative liberty to find the Schnorr test that we want.

▶ Once we have this Schnorr test, we take advantage of the
L1-computability of f , specifically its approximating sequence.
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The Dirichlet Problem for the Upper Half-Plane

Lemma 1. (Pathak, Rojas, and Simpson 2014)

Let f ∈ L1(R) be L1-computable. Let {fn}n∈N be a computable
name of f . Then we can find uniformly Σ0

1 sets {Vk}k∈N such that
the following statements hold:

1. λ(Vk) ≤ 2+
√
2

2k−1

2. The sequence λ(Vk) is uniformly computable

3. ∀x ̸∈ Vk and n ≥ k we have

|fi (x)− f2n(x)| ≤
2 +

√
2

2n

For all i ≥ 2n
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The Dirichlet Problem for the Upper Half-Plane

Lemma 2. (Rodriguez and R. 2025+)

Let f ∈ L1(R) be L1-computable. Let {fn}n∈N be a computable
name of f . Then we can find uniformly Σ0

1 sets {Uk}k∈N such that
the following statements hold:

1. λ(Uk) ≤ 3(
√
2+2)
2k

2. The sequence λ(Uk) is uniformly computable

3. ∀x ̸∈ Uk and n ≥ k we have∫
R
Py (x − t)|f (t)− f2n(t)| dt ≤

2 +
√
2

2n
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The Dirichlet Problem for the Upper Half-Plane

Lemma 3. (Rodriguez and R. 2025+)

Let Wk = Uk ∪ Vk where Uk is the Schnorr test from Lemma 2
and Vk is the Schnorr test from Lemma 1. If x ̸∈

⋂∞
i=0 Wk , then

lim
n→∞

fn(x) = f (x) = lim
y→0+

P[f ](x , y)



19/23

The Dirichlet Problem for the Upper Half-Plane

Theorem. (Rodriguez and R. 2025+)

If x ∈ R is not Schnorr random, then there exists an L1-computable
function f ∈ L1(R) such that lim

y→0+
P[f ](x , y) ̸= f (x).

Key Ideas

▶ The idea is to design an L1-computable sequence of functions that
converges effectively to an L1-computable function f in the limit.

▶ This function will have the property that the radial limits of the
Poisson integral will blow up on Schnorr non-random points x while
f (x) is finite.
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The Dirichlet Problem for the Upper Half-Plane

Theorem. (Rodriguez and R. 2025+)

If x ∈ R is Martin-Löf and f ∈ L1(R) is weakly L1-computable,
then lim

y→0+
P[f ](x , y) = f (x).

Proof Sketch.
Three ingredients: (1) Poisson integral of compactly-supported
continuous boundary data fully recovers the data; (2) Poisson integrals of
f − fn converge pointwise to 0; (3) f (x) = limn fn(x) for every Martin-Löf
random x ∈ R.
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The Dirichlet Problem for the Upper Half-Plane

Theorem. (Rodriguez and R. 2025+)

If x ∈ R is not Martin-Löf random, then there exists a weakly L1-
computable f ∈ L1(R) such that lim

y→0+
P[f ](x , y) ̸= f (x).

Proof Sketch.
Fix x ∈ R not Martin-Löf random. Then, there is a universal Martin-Löf
test {Uk}k∈N such that x ∈

⋂
k Uk . Without loss or generality, we may

assume Uk+1 ⊆ Uk for each k . Since {Uk}k∈N is Σ0
1 uniformly in k , it is

possible to compute an array {Ik,n}k,n∈N of rational closed intervals such
that Uk =

⋃
n Ik,n for each n and Ik,n ∩ Ik,n′ = ∅ whenever n ̸= n′. Let

f =
∑

n,k 2
−k(1− 1Ik,n). Show that f is weakly L1(R)-computable.

Then, show that f (x) = 0 while limy→0+ P[f ](x , y) >
1

2
.
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Future Directions

▶ Look at computable randomness and weak-2 randomness in terms of
Carleson’s theorem and the Dirichlet problem for UHP

▶ Study randomness by looking at weak solutions to PDEs, Sobolev
spaces, and harmonic analysis literature

▶ Toward a meta-theorem concerning a.e. theorems and notions of
randomness
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Thank you!


