Type zero choice principle and Halin's infinite ray theorem

Soowhan Yoon American University in Bulgaria

CCR 2025

(Jointly with Jun Le Goh, National University of Singapore)

1 Infinite Ray Theorem

Definition 1. The principle IRT states: If a graph G has arbitrarily many disjoint rays, then G has infinitely many disjoint rays.

Definition 2 (IRT). If a graph G has for all $n \in \mathbb{N}$ a sequence $\langle X_0, \ldots, X_{n-1} \rangle$ of disjoint rays, then G has an infinite sequence $\langle X_0, X_1, \ldots \rangle$ of disjoint rays.

Definition 3 (IRT⁻). If a graph G has for all $n \in \mathbb{N}$ a sequence $\langle X_0, \ldots, X_{n-1} \rangle$ of disjoint rays, then G has an infinite sequence $\langle G_n \rangle_n$ of disjoint subgraphs each of which contains a ray.

Definition 4 (Barnes, Goh, Shore [1]). A sentence (theory) T is a theorem (theory) of hyperarithmetic analysis (THA) if

- 1. For every $X \subseteq \mathbb{N} \langle \mathbb{N}, \mathrm{HYP}(X) \rangle \models T$ and
- 2. For every $S \subseteq 2^{\mathbb{N}}$, if $\langle \mathbb{N}, S \rangle \models T$ and $X \in S$ then $\mathrm{HYP}(X) \subseteq S$.

Definition 5 (ABW). Given an arithmetic predicate P(X) on $2^{\mathbb{N}}$, either there exists a finite sequence $\langle X_0, \dots, X_n \rangle$ containing all P-solutions or there is an accumulation point Y of the class $\{X : P(X)\}$, i.e., every neighborhood of Y contains two X such that P(X).

Definition 6 (Π_1^1 -SEP). Given two Π_1^1 predicates $\phi(n), \psi(n)$,

 $\forall n \neg \phi(n) \lor \neg \psi(n) \to \exists X \, \forall n \, (\phi(n) \to n \in X) \land (\psi(n) \to n \notin X).$

Definition 7 (Δ_1^1 -CA). Given a Π_1^1 predicate $\phi(n)$ and a Σ_1^1 predicate $\psi(n)$,

$$\forall n \, \phi(n) \leftrightarrow \psi(n) \to \exists X \, \forall n \, \phi(n) \leftrightarrow n \in X.$$

Below zoo of THA is taken from BGS [2]. Also have a look at [3].

Figure 4: Partial zoo of theories of hyperarithmetic analysis. Single arrows indicate implication while double arrows indicate strict implication. The references for the above results are as follows: (1, 2) Montalbán [17, Theorems 2.1, 3.1]; (3, 4) Montalbán [16, Theorem 2.2], Neeman [19, Theorems 1.2, 1.3, 1.4], see also Neeman [20, Theorem 1.1]; (5) Theorem 4.5; (6) Theorems 7.7, 7.10; (7) Conidis [4, Theorem 4.1]. All results concerning finite- Σ_1^1 -AC₀ are in Goh [10].

Lemma 8 (RCA₀). IRT⁻ \rightarrow ACA

Theorem 9 (RCA₀ + $I\Sigma_1^1$). IRT⁻ \rightarrow ABW

Proof. (→) Assume IRT⁻. Let P(X) be an arithmetic predicate on $2^{\mathbb{N}}$ which does not hold finitely many solutions. Since P(X) does not hold finitely many solutions, given n distinct P-solutions X_0, \ldots, X_{n-1} , there exists an X_n distinct from X_0, \ldots, X_{n-1} such that $P(X_n)$. Inductively, P(X) holds for arbitrarily many solutions ($I\Sigma_1^1$). Let T be a binary tree so that an $X \in [T]$ iff P(X) (ACA). View T as a graph. Given an arbitrary sequence X_0, \ldots, X_{n-1} of distinct Psolutions. Take sufficiently large m so that $(X_0)_{\geq m}, (X_1)_{\geq m}, \ldots, (X_n)_{\geq m}$ are disjoint. Therefore, T contains arbitrarily many disjoint rays. Invoke IRT⁻ to obtain an infinite sequence of disjoint subgraphs $\langle G_n \rangle_n$ each of which contains a ray. Without loss of generality, assume these G_n are connected (ACA). Now viewing G_n as filters in the tree T, take the minimum elements g_n from each G_n . Take the downward closure G of $(g_n)_n$ in the tree T, and invoke WKL to obtain a path $Z \in [G]$. This Z is the desired accumulation point for P(X).

2 Zero type choice principle

Definition 10. Σ_1^1 -AC is the axiom schema:

 $\forall n \exists X \, \phi(n, X) \to \exists Y \forall n \, \phi(n, Y^{[n]})$

consisting of all Σ_1^1 formulas $\phi(n, X)$ that does not contain Y as a free variable, where $Y^{[n]} = \{m : \langle n, m \rangle \in Y\}$ means the nth column of Y. **Definition 11.** Σ_1^1 -AC⁰ is the axiom schema:

$$\forall n \exists i \, \phi(n, i) \to \exists f \forall n \, \phi(n, f(n))$$

consisting of all Σ_1^1 formulas $\phi(n, i)$ that does not contain f as a free variable.

Definition 12. Σ_1^1 -AC^{0,k} is the axiom schema:

$$\forall n \Big(\exists i \phi(n, i) \land \forall i_0, \cdots, i_k \big(i_0, \cdots, i_k \text{ distinct} \to \neg \phi(n, i_0) \lor \cdots \lor \neg \phi(n, i_k) \big) \Big) \\ \to \exists f \forall n \phi(n, f(n))$$

consisting of all Σ_1^1 formulas $\phi(n, i)$ that does not contain f as a free variable.

Theorem 13 (RCA₀). Σ_1^1 -AC^{0,1} $\leftrightarrow \Delta_1^1$ -CA

Proof. (→) Assume Σ₁¹-AC^{0,1}. Suppose two Π₁¹ formulas $\phi(n), \psi(n)$ satisfy $\forall n (\phi(n) \leftrightarrow \neg \psi(n))$. Consider the Σ₁¹ formula $A(n, i) := (\phi(n) \to i = 0) \land (\psi(n) \to i = 1)$. For each *n*, there exists a unique *i* that satisfy A(n, i). Invoke Σ₁¹-AC^{0,1} to obtain an $f : \mathbb{N} \to \{0, 1\}$ such that $\forall n A(n, f(n))$. Let $X = \{n : f(n) = 0\}$. Then, $n \in X$ iff $\phi(n)$.

 (\leftarrow) Assume Δ_1^1 -CA. Suppose a Σ_1^1 formula $\phi(n,i)$ holds for exactly one i to each n. Consider the Π_1^1 formula $\psi(n,i) := \forall j (j \neq i \rightarrow \neg \phi(n,j))$. Then, $\phi(n,i) \leftrightarrow \psi(n,i)$. Invoke Δ_1^1 -CA to obtain $X = \{\langle n,i \rangle : \phi(n,i)\}$. The set X is the graph of the desired $f : \mathbb{N} \to \mathbb{N}$ satisfying $\forall n \phi(n, f(n))$.

Theorem 14 (RCA₀). Σ_1^1 -AC^{0,k} $\leftrightarrow \Pi_1^1$ -SEP ($k \ge 2$)

Proof. $(\Sigma_1^{1}-\mathrm{AC}^{0,2} \to \Pi_1^{1}-\mathrm{SEP})$ Assume $\Sigma_1^{1}-\mathrm{AC}^{0,2}$. Suppose two Π_1^{1} formulas $\phi(n), \psi(n)$ satisfy $\forall n (\neg \phi(n) \lor \neg \psi(n))$. Consider the Σ_1^{1} formula $A(n,i) := (\phi(n) \to i = 0) \land (\psi(n) \to i = 1) \land (i = 0 \lor i = 1)$. For each n, there exists an i, and at most two possible i's that satisfy A(n,i). Invoke $\Sigma_1^{1}-\mathrm{AC}^{0,2}$ to obtain an $f : \mathbb{N} \to \{0,1\}$ such that $\forall n A(n, f(n))$. Let $X = \{n : f(n) = 0\}$. Then, X separates ϕ and ψ .

 $\begin{array}{ll} (\Pi_1^{1}\text{-}\mathrm{SEP}\to\Sigma_1^{1}\text{-}\mathrm{AC}^{0,k}) \text{ Assume } \Pi_1^{1}\text{-}\mathrm{SEP}. \text{ Suppose a } \Sigma_1^{1} \text{ formula } \phi(n,i) \text{ holds} \\ \text{for at least one but at most } k \geq 2 \text{ number of } i\text{'s for each } n. \text{ Consider the two} \\ \Pi_1^{1} \text{ formulas } \psi_1(n,i) := \forall j(j \neq i \rightarrow \neg \phi(n,j)) \text{ and } \psi_2(n,i) := \neg \phi(n,i). \text{ Notice} \\ \psi_1, \psi_2 \text{ are disjoint: } \forall n, i (\neg \psi_1(n,i) \lor \neg \psi_2(n,i)). \text{ Invoke } \Pi_1^{1}\text{-}\mathrm{SEP} \text{ to obtain } X \supseteq \\ \{\langle n,i\rangle:\psi_1(n,i)\} \text{ such that } X^c \supseteq \{\langle n,i\rangle:\psi_2(n,i)\}. \text{ If } \langle n,i\rangle \in X, \text{ then } \phi(n,i) \\ \text{ must hold since } X^c \supseteq \{\langle n,i\rangle:\neg \phi(n,i)\}. \text{ So, consider the new } \Pi_1^{1} \text{ formula } \\ \psi_1'(n,i) := \forall j(\langle n,j\rangle \notin X) \land \exists i' \forall j (j \neq i \land j \neq i' \rightarrow \neg \phi(n,j)). \text{ It must be that} \\ \psi_1' \text{ and } \psi_2 \text{ are disjoint since } \forall j(\langle n,j\rangle \notin X) \text{ only holds when } \phi(n,i) \text{ holds for more} \\ \text{ than one } i \text{ for a fixed } n. \text{ Invoke again } \Pi_1^{1}\text{-}\mathrm{SEP} \text{ to obtain } X' \supseteq \{\langle n,i\rangle:\psi_1'(n,i)\} \\ \text{ such that } (X')^c \supseteq \{\langle n,i\rangle:\psi_2(n,i)\}. \text{ Inductively (meta induction outside of } \\ \Pi_1^{1}\text{-}\mathrm{SEP}_0), \text{ let } \psi_1^{(l)}(n,i):= \forall j(\langle n,j\rangle \notin X \cup \cdots \cup X^{(l-1)}) \land \exists i', \cdots, i^{(l)} \forall j (j \neq i \land j \neq i' \land \cdots \land j \neq i^{(l)} \rightarrow \neg \phi(n,j)) \text{ to obtain } X^{(l)} \text{ for } 1 \leq l \leq k-1. \text{ Define} \\ f(n) = i \text{ for the lexicographically least } \langle l,i\rangle \in \{0,\cdots,k-1\} \times \mathbb{N} \text{ such that} \\ \langle n,i\rangle \in X^{(l)}. \text{ Then, } \forall n \phi(n,f(n)). \end{array}$

References

- James S. Barnes, Jun Le Goh, and Richard A. Shore. Theorems of hyperarithmetic analysis and almost theorems of hyperarithmetic analysis. *The Bulletin of Symbolic Logic*, 28(1):133–149, 2022.
- [2] James S. Barnes, Jun Le Goh, and Richard A. Shore. Halin's infinite ray theorems: Complexity and reverse mathematics. *Journal of Mathematical Logic*, 25(01):2450010, 2025.
- [3] Antonio Montalbán. On the π 11-separation principle. Mathematical Logic Quarterly, 54:563 578, 11 2008.