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1 Infinite Ray Theorem

Definition 1. The principle IRT states: If a graph G has arbitrarily many
disjoint rays, then G has infinitely many disjoint rays.

Definition 2 (IRT). If a graph G has for alln € N a sequence (Xo,..., Xpn—1)
of disjoint rays, then G has an infinite sequence (Xo, X1,...) of disjoint rays.

Definition 3 (IRT ™). If a graph G has for alln € N a sequence (Xo, ..., Xpn—1)
of disjoint rays, then G has an infinite sequence (Gy), of disjoint subgraphs each
of which contains a ray.

Definition 4 (Barnes, Goh, Shore [1]). A sentence (theory) T is a theorem
(theory) of hyperarithmetic analysis (THA) if

1. For every X CN (NHYP(X)) =T and
2. For every S C 2V, if (N,S) =T and X € S then HYP(X) C S.

Definition 5 (ABW). Given an arithmetic predicate P(X) on 2~, either there
exists a finite sequence (Xo, - ,X,) containing all P-solutions or there is an
accumulation point Y of the class {X : P(X)}, i.e., every neighborhood of Y
contains two X such that P(X).

Definition 6 (II3-SEP). Given two 1} predicates ¢(n),(n),
Vn=¢g(n) vV —1(n) = IXVn(p(n) = ne X)A(n) > n¢X).
Definition 7 (A}-CA). Given a I1j predicate ¢(n) and a X7 predicate 1 (n),

Vné(n) + P(n) - IXVno(n) & n e X.



Below zoo of THA is taken from BGS [2]. Also have a look at [3].
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Figure 4: Partial zoo of theorics of hyperarithmetic analysis. Single arrows indicate implica
tion while double arrows indicate strict implication. The references for the above results are
as follows: (1, 2) Montalbdn [17, Theorems 2.1, 3.1]; (3, 4) Montalban [16, Theorem 2.2],
Neeman [19, Theorems 1.2, 1.3, 1.4], see also Neeman [20, Theorem 1.1]; (5) Theorem 4.5;
(6) Theorems 7.7, 7.10; (7) Conidis [4, Theorem 4.1]. All results concerning finite-X1-AC,
are in Goh [10].

Lemma 8 (RCAj). IRT™ — ACA
Theorem 9 (RCA( +IX}). IRT™ — ABW

Proof. (—) Assume IRT™. Let P(X) be an arithmetic predicate on 2 which
does not hold finitely many solutions. Since P(X) does not hold finitely many
solutions, given n distinct P-solutions Xy, ..., X,,_1, there exists an X,, distinct
from Xo,...,X,—1 such that P(X,). Inductively, P(X) holds for arbitrarily
many solutions (IX}). Let T be a binary tree so that an X € [T iff P(X) (ACA).
View T as a graph. Given an arbitrary sequence Xy, ..., X,_1 of distinct P-
solutions. Take sufficiently large m so that (Xo)>m, (X1)>m,..., (Xn)>m are
disjoint. Therefore, T' contains arbitrarily many disjoint rays. Invoke IRT™ to
obtain an infinite sequence of disjoint subgraphs (G, ), each of which contains
a ray. Without loss of generality, assume these G,, are connected (ACA). Now
viewing G, as filters in the tree T, take the minimum elements g,, from each
G,,. Take the downward closure G of (g,,), in the tree T, and invoke WKL to
obtain a path Z € [G]. This Z is the desired accumulation point for P(X). O

2 Zero type choice principle
Definition 10. ¥1-AC is the axiom schema:
vnaX ¢(n, X) — IYVn¢(n, Y

consisting of all X} formulas ¢(n, X) that does not contain'Y as a free variable,
where Y™ = {m : (n,m) € Y} means the nth column of Y .



Definition 11. ©1-AC° is the aziom schema:

Yndip(n,i) — IfVno(n, f(n))
consisting of all X} formulas ¢(n,i) that does not contain f as a free variable.

Definition 12. $1-AC%* is the aziom schema:

Vn<3i¢(n,i) AVig, - ik (ig, -+ ik distinet — =g(n,ig) V - -+ V —@(n,ik)))
— 3fYng(n, f(n))
consisting of all ¥} formulas ¢(n,i) that does not contain f as a free variable.
Theorem 13 (RCA). ¥1-AC%!' < Al-CA

Proof. (—) Assume ${-AC%'. Suppose two I} formulas ¢(n),(n) satisfy
vn (¢(n) <+ =p(n)). Consider the ¥} formula A(n, i) := (¢(n) — i = 0)A(Y(n) — i =1).
For each n, there exists a unique i that satisfy A(n,i). Invoke X1-AC%! to ob-
tain an f : N — {0,1} such that Vn A(n, f(n)). Let X = {n: f(n) = 0}. Then,
n € X iff ¢(n).
(<) Assume Al-CA. Suppose a 31 formula ¢(n,4) holds for exactly one i
to each n. Consider the I} formula w(n 1) = VYj(j # 1 — —¢(n,j)). Then,
d(n, i) < P(n,i). Invoke Al CA to obtain X = {(n,4) : ¢(n,i)}. The set X is
the graph of the desired f : N — N satisfying Vn ¢(n, f(n)). O

Theorem 14 (RCA;). ¥1-AC%* « M1-SEP (k > 2)

Proof. (£1-AC"? — M}-SEP) Assume {-AC%?. Suppose two II} formulas
o(n),y(n) satisfy Vn (=¢(n) VvV —1p(n)). Consider the ¥1 formula A(n,i) :=
(p(n) = i=0)A (¢p(n) »i=1)A(i=0Vi=1). For each n, there exists an
i, and at most two possible i’s that satisfy A(n,i). Invoke X}-AC%? to obtain
an f: N — {0,1} such that Vn A(n, f(n)). Let X ={n: f(n) = 0}. Then, X
separates ¢ and .

(IT}-SEP — ©1-AC%*) Assume II}-SEP. Suppose a X} formula ¢(n, i) holds
for at least one but at most £ > 2 number of i’s for each n. Consider the two
I} formulas 1y (n,i) := Vj(j # i — —¢(n,j)) and s(n,i) := =¢(n,i). Notice
Y1, are disjoint: Vn, i (—1(n,i) V —ba(n,i)). Invoke II3-SEP to obtain X D
{(n,) : ¥1(n,i)} such that X D {(n,d) : ¥a(n,i)}. If (n,i) € X, then ¢(n,1)
must hold since X¢ D {(n,i) : =¢(n,i)}. So, consider the new II} formula
Yi(n,d) :=Vi((n,j) € X)ANTi'Vj(j £iNj#7 — —¢(n,j)). It must be that
Y1 and 9 are disjoint since Vj({n, j) ¢ X) only holds when ¢(n, i) holds for more
than one ¢ for a fixed n. Invoke again IT{-SEP to obtain X’ D {(n,4) : ¢} (n,i)}
such that (X)¢ D {(n,4) : ¥2(n,i)}. Inductively (meta induction outside of
I1}-SEPy), let ¥{" (n,7) := Vj({n,j) ¢ X U--- UXED)Y AT, i V) (j #
iINGFEV N NG F# z(l) — —@(n j)) to obtain X(l) for 1 <1<k —1. Define
f(n) = i for the lexicographically least (I,4) € {0,---,k — 1} x N such that
(n,i) € XU, Then, Vn ¢(n, f(n)). O
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