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1 Infinite Ray Theorem

Definition 1. The principle IRT states: If a graph G has arbitrarily many
disjoint rays, then G has infinitely many disjoint rays.

Definition 2 (IRT). If a graph G has for all n ∈ N a sequence ⟨X0, . . . , Xn−1⟩
of disjoint rays, then G has an infinite sequence ⟨X0, X1, . . .⟩ of disjoint rays.

Definition 3 (IRT−). If a graph G has for all n ∈ N a sequence ⟨X0, . . . , Xn−1⟩
of disjoint rays, then G has an infinite sequence ⟨Gn⟩n of disjoint subgraphs each
of which contains a ray.

Definition 4 (Barnes, Goh, Shore [1]). A sentence (theory) T is a theorem
(theory) of hyperarithmetic analysis (THA) if

1. For every X ⊆ N ⟨N,HYP(X)⟩ |= T and

2. For every S ⊆ 2N, if ⟨N, S⟩ |= T and X ∈ S then HYP(X) ⊆ S.

Definition 5 (ABW). Given an arithmetic predicate P (X) on 2N, either there
exists a finite sequence ⟨X0, · · · , Xn⟩ containing all P -solutions or there is an
accumulation point Y of the class {X : P (X)}, i.e., every neighborhood of Y
contains two X such that P (X).

Definition 6 (Π1
1-SEP). Given two Π1

1 predicates ϕ(n), ψ(n),

∀n¬ϕ(n) ∨ ¬ψ(n)→ ∃X ∀n (ϕ(n)→ n ∈ X) ∧ (ψ(n)→ n ̸∈ X).

Definition 7 (∆1
1-CA). Given a Π1

1 predicate ϕ(n) and a Σ1
1 predicate ψ(n),

∀nϕ(n)↔ ψ(n)→ ∃X ∀nϕ(n)↔ n ∈ X.
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Below zoo of THA is taken from BGS [2]. Also have a look at [3].

Lemma 8 (RCA0). IRT− → ACA

Theorem 9 (RCA0 + IΣ1
1). IRT− → ABW

Proof. (→) Assume IRT−. Let P (X) be an arithmetic predicate on 2N which
does not hold finitely many solutions. Since P (X) does not hold finitely many
solutions, given n distinct P -solutions X0, . . . , Xn−1, there exists an Xn distinct
from X0, . . . , Xn−1 such that P (Xn). Inductively, P (X) holds for arbitrarily
many solutions (IΣ1

1). Let T be a binary tree so that anX ∈ [T ] iff P (X) (ACA).
View T as a graph. Given an arbitrary sequence X0, . . . , Xn−1 of distinct P -
solutions. Take sufficiently large m so that (X0)≥m, (X1)≥m, . . . , (Xn)≥m are
disjoint. Therefore, T contains arbitrarily many disjoint rays. Invoke IRT− to
obtain an infinite sequence of disjoint subgraphs ⟨Gn⟩n each of which contains
a ray. Without loss of generality, assume these Gn are connected (ACA). Now
viewing Gn as filters in the tree T , take the minimum elements gn from each
Gn. Take the downward closure G of (gn)n in the tree T , and invoke WKL to
obtain a path Z ∈ [G]. This Z is the desired accumulation point for P (X).

2 Zero type choice principle

Definition 10. Σ1
1-AC is the axiom schema:

∀n∃X ϕ(n,X)→ ∃Y ∀nϕ(n, Y [n])

consisting of all Σ1
1 formulas ϕ(n,X) that does not contain Y as a free variable,

where Y [n] = {m : ⟨n,m⟩ ∈ Y } means the nth column of Y .
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Definition 11. Σ1
1-AC

0 is the axiom schema:

∀n∃i ϕ(n, i)→ ∃f∀nϕ(n, f(n))

consisting of all Σ1
1 formulas ϕ(n, i) that does not contain f as a free variable.

Definition 12. Σ1
1-AC

0,k is the axiom schema:

∀n
(
∃iϕ(n, i) ∧ ∀i0, · · · , ik

(
i0, · · · , ik distinct→ ¬ϕ(n, i0) ∨ · · · ∨ ¬ϕ(n, ik)

))
→ ∃f∀nϕ(n, f(n))

consisting of all Σ1
1 formulas ϕ(n, i) that does not contain f as a free variable.

Theorem 13 (RCA0). Σ1
1-AC

0,1 ↔ ∆1
1-CA

Proof. (→) Assume Σ1
1-AC

0,1. Suppose two Π1
1 formulas ϕ(n), ψ(n) satisfy

∀n (ϕ(n)↔ ¬ψ(n)). Consider the Σ1
1 formulaA(n, i) := (ϕ(n)→ i = 0)∧(ψ(n)→ i = 1).

For each n, there exists a unique i that satisfy A(n, i). Invoke Σ1
1-AC

0,1 to ob-
tain an f : N→ {0, 1} such that ∀nA(n, f(n)). Let X = {n : f(n) = 0}. Then,
n ∈ X iff ϕ(n).

(←) Assume ∆1
1-CA. Suppose a Σ1

1 formula ϕ(n, i) holds for exactly one i
to each n. Consider the Π1

1 formula ψ(n, i) := ∀j(j ̸= i → ¬ϕ(n, j)). Then,
ϕ(n, i) ↔ ψ(n, i). Invoke ∆1

1-CA to obtain X = {⟨n, i⟩ : ϕ(n, i)}. The set X is
the graph of the desired f : N→ N satisfying ∀nϕ(n, f(n)).

Theorem 14 (RCA0). Σ1
1-AC

0,k ↔ Π1
1-SEP (k ≥ 2)

Proof. (Σ1
1-AC

0,2 → Π1
1-SEP) Assume Σ1

1-AC
0,2. Suppose two Π1

1 formulas
ϕ(n), ψ(n) satisfy ∀n (¬ϕ(n) ∨ ¬ψ(n)). Consider the Σ1

1 formula A(n, i) :=
(ϕ(n)→ i = 0) ∧ (ψ(n)→ i = 1) ∧ (i = 0 ∨ i = 1). For each n, there exists an
i, and at most two possible i’s that satisfy A(n, i). Invoke Σ1

1-AC
0,2 to obtain

an f : N → {0, 1} such that ∀nA(n, f(n)). Let X = {n : f(n) = 0}. Then, X
separates ϕ and ψ.

(Π1
1-SEP→ Σ1

1-AC
0,k) Assume Π1

1-SEP. Suppose a Σ1
1 formula ϕ(n, i) holds

for at least one but at most k ≥ 2 number of i’s for each n. Consider the two
Π1

1 formulas ψ1(n, i) := ∀j(j ̸= i → ¬ϕ(n, j)) and ψ2(n, i) := ¬ϕ(n, i). Notice
ψ1, ψ2 are disjoint: ∀n, i (¬ψ1(n, i) ∨ ¬ψ2(n, i)). Invoke Π1

1-SEP to obtain X ⊇
{⟨n, i⟩ : ψ1(n, i)} such that Xc ⊇ {⟨n, i⟩ : ψ2(n, i)}. If ⟨n, i⟩ ∈ X, then ϕ(n, i)
must hold since Xc ⊇ {⟨n, i⟩ : ¬ϕ(n, i)}. So, consider the new Π1

1 formula
ψ′
1(n, i) := ∀j(⟨n, j⟩ ̸∈ X) ∧ ∃i′ ∀j (j ̸= i ∧ j ̸= i′ → ¬ϕ(n, j)). It must be that

ψ′
1 and ψ2 are disjoint since ∀j(⟨n, j⟩ ̸∈ X) only holds when ϕ(n, i) holds for more

than one i for a fixed n. Invoke again Π1
1-SEP to obtain X ′ ⊇ {⟨n, i⟩ : ψ′

1(n, i)}
such that (X ′)c ⊇ {⟨n, i⟩ : ψ2(n, i)}. Inductively (meta induction outside of

Π1
1-SEP0), let ψ

(l)
1 (n, i) := ∀j(⟨n, j⟩ ̸∈ X ∪ · · · ∪ X(l−1)) ∧ ∃i′, · · · , i(l) ∀j (j ̸=

i ∧ j ̸= i′ ∧ · · · ∧ j ̸= i(l) → ¬ϕ(n, j)) to obtain X(l) for 1 ≤ l ≤ k − 1. Define
f(n) = i for the lexicographically least ⟨l, i⟩ ∈ {0, · · · , k − 1} × N such that
⟨n, i⟩ ∈ X(l). Then, ∀nϕ(n, f(n)).
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