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Introduction



Theorems as problems

Many theorems (of ordinary mathematics) can be seen as problems
involving instances and solutions:

For every field, there exists an algebraic closure.
For infinite binary tree, there exists an infinite branch (Weak
König’s lemma)
For every bounded sequence in Rn, there exists a converging
subsequence (Bolzano-Weierstrass theorem).

The proof of these theorems often give a "procedure" to build the
solution given the instance.
We can then wonder about the effectiveness of such constructions.
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Computational content of theorems

Given X ⊆ N an instance of a problem P, can we compute a
solution Y ⊆ N from X ?

In a lot of cases the answer will be no:
There exists computable consistent theories that have no
computable models (e.g. Tennenbaum’s theorem)
There exists computable commutative rings with no
computable maximal ideals.

Such theorems will therefore not be provable in constructive
mathematics.
But we can push the computational analysis further and obtain
more precise proof-theoretic results.
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Reverse Mathematics



To prove that an axiom was needed for a theorem, we can try to
prove the axiom from the theorem:

Modulo ZF, Zorn’s lemma implies the axiom of choice.
Modulo absolute geometry, the Pythagorean theorem implies
the Parallel postulate.

Reverse mathematics does the same, but modulo constructive
mathematics.



Framework

We will use the formalism of second-order arithmetic.

All the models considered will be ω-models, i.e. models
(N,S ,+,×, 0) with (N,+,×, 0) the standard integers, and S ⊆ 2N

the second-order part.



Base theory RCA0

Base theory (corresponding to computable mathematics) RCA0:
Robinson’s arithmetic Q

∆0
1-comprehension (The computable sets exists)

Σ0
1-induction (Every set of finite cardinality is bounded)

The computable sets form a minimal ω-model of RCA0.



The “Big Five”

Modulo RCA0, most theorems of ordinary mathematics are
equivalent to one the following theories (from weakest to strongest):

RCA0 : constructive mathematics

WKL0 : compactness arguments

ACA0 : second-order PA

ATR0 : transfinite recursion

Π1
1 − CA0 : impredicativism



ACA0

Definition (ACA0)

ACA0 is RCA0 plus the comprehension axiom for every arithmetical
formula.

This is equivalent to comprehension for Σ0
1 formula, or to the

existence of the Turing jump of any set.
The arithmetical sets form a minimal model ω-model of ACA0.

For a problem P, if there exists an ω-model of RCA0 + P not
containing the halting set K , then RCA0 + P ̸⊢ ACA0.
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Cone avoidance

Definition ( Cone avoidance)

A problem P admits cone avoidance if for every set Z , every
non-Z -computable set C , every Z -computable instance X of P has
a solution Y that does not compute C .

Proposition

If P admits cone avoidance, then for every non computable set C ,
there exists a model of RCA0 + P that does not contains C .
Hence RCA0 + P ̸⊢ ACA0.



Strong cone avoidance

Definition (strong Cone avoidance)

A problem P admits strong cone avoidance if for every set Z , every
non-Z -computable set C , every Z -computable instance X of P has
a solution Y that does not compute C .

Cone avoidance witness the computable weakness of a problem P.
Strong cone avoidance witness its combinatorial weakness.



The infinite Ramsey’s
theorem for pairs and two

colors escape the
structure phenomenon of

Ramsey’s theory.

RCA0

WKL0

ACA0

ATR0

Π1
1 − CA0

RT2
2



Ramsey Theory



Finite Ramsey’s theorem

For every 2-coloring of the
edges of K6



Finite Ramsey’s theorem

There exists some
monochromatic copy of K3



Infinite Ramsey’s theorem

Let [X ]n be the set of all subsets of X of cardinality n.

Definition (Ramsey’s theorem)

RTn
k is the statement: “For every coloring f : [N]n → k , there is an

infinite set H ⊆ N such that |f ([H]n)| = 1”.

RT1
k is the infinite pigeonhole principle. It is computably true

(albeit not by a uniform procedure, we can’t computably guess
which color to choose) and RCA0 ⊢ RT1

k for every k ∈ N.



Facts

RT1
2 admits strong cone avoidance, i.e., for every set A and

every non computable set Z , there exists some subset H ⊆ A
or H ⊆ A such that H ̸≥T Z . (Dzhafarov/Jockusch)
There exists a ∅′-computable instance of RT2

2, every solution
of which computes ∅′ (Hence RT2

2 does not admits strong
cone avoidance)
RT2

2 admits cone avoidance. (Dzhafarov/Jockusch)
For every n ≥ 3, there exists a computable instance of RTn

2,
every solution of which computes ∅(n−2). Hence
RCA0 + RTn

2 ⊢ ACA0 (Hirschfeldt/ Jockusch).



Ramsey-like theorems

What about weakenings of Ramsey’s theorems ?

Definition (Thin set theorem)

Let TSn be the statement: “for every coloring f : [N]n → N, there
exists some infinite set H ⊆ N such that f ([H]n) ̸= N.”

Definition (Free set theorem)

Let FSn be the statement: “for every coloring f : [N]n → N, there
exists some infinite set H ⊆ N, such that f (s) /∈ H \ s for every
s ∈ [H]n.”

Definition (Rainbow Ramsey theorem)

Let RRTn
k be the statement: “for every coloring f : [N]n → N such

that |f −1(ℓ)| ≤ k for every ℓ ∈ N, there exists some infinite H ⊆ N
such that f is injective on [H]n.”



FSn

TSnRRTn
k

RTn
k

Theorem (Wang)

For every n, k , TSn, FSn and RRTn
k admits the strong cone

avoidance property.



Schreier barrier



Wrong generalizations

Let [H]<N be the set of all finite subsets of H.
Let RT<N be the statement that for every coloring f : [N]<N → 2
there exists an infinite set H such that |f ([H]<N)| = 1.

Proposition

RT<N is false. (Take f such that f (s) = 0 if |s| even and f (s) = 1
otherwise.)

Similarly, the generalizations TS<N, FS<N and RRT<N are false.
(For TS<N, take f (s) = |s|)



Schreier Barrier

Definition (exactly ω-largeness)

A finite set s ⊆ N is exactly ω-large if |s| = min s + 1.

We write [H]!ω for the set of all the exactly ω-large subsets of H.

Definition

Let RT!ω be the statement: “for every coloring f : [N]!ω → 2 there
exists an infinite set H such that |f ([H]!ω)| = 1.”

Define TS!ω, FS!ω and RRT!ω similarly.



Clopen Ramsey theorem

We write [H]N for the set of all the infinite subsets of H.
For every infinite set X = {x0, . . . }, there exists a unique
prefix σ ≺ X that is exactly ω-large: x0, . . . , xminX .
Therefore, for every coloring f : [N]!ω → 2, we can consider
the coloring g : [N]N → 2 that send an infinite set X to f (σ)
for σ its exactly ω-large prefix.
g is a particular instance of the Clopen Ramsey theorem,
which is equivalent to ATR0 (Friedman/McAloon/Simpson)
RT!ω can also be seen as the first step of a hierarchy of
statements (due to Nash-Williams) generalizing RTn, and
concerning coloring of barriers (sets of finite sets having the
property that no elements is included in another).



Results

Theorem (Carlucci/Gjetaj/L./Levy Patey)

TS!ω and FS!ω proves the existence of ∅(ω), the ω-th jump.
Hence, they imply (and are strictly stronger than) ACA0.



Sketch.

It is sufficient to show the statement for TS!ω as any free set will
be thin.
The statement “for every f : [N]n → k , there is an infinite H ⊆ N
such that |f ([H])n| ≠ k” doesn’t have the cone avoidance property
when k < Cn (where Cn is the n-th Catalan number)
(Cholak/Patey).

We can get a uniformly computable family of computable coloring
fn : [N]n → n such that every infinite fn-thin set computes ∅′.
We can combine all those instances and obtain some coloring
f : [N]!ω → N by taking f (x0, . . . , xx0) = fx0(x1, . . . , xx0).
Any f -thin set H = {x0, . . . } will be fxi -thin for every i and
therefore computes ∅′.
We can go further than that and computes ∅(ω) by transforming
∅(k)-computable colorings f : [N]n → N into computable coloring
f : [N]n+k → N using ∆k approximations.



Theorem (Carlucci/Gjetaj/L./Levy Patey)

RRT!ω have the strong cone avoidance property.



Proof Sketch

Let C be a non-computable set, and let f : [N]!ω → N be a coloring
such that no color appear more than 2 times.

For every s, t ∈ [N]!ω, if s ̸= t then s ̸⊆ t (if min s ≥ min t,
then |s| ≥ |t|).
Let g : [N]!ω → N be the partial f ′-computable coloring
defined by g(s) = min(t \ s) if there exists some t ̸= s such
that f (t) = f (s) and s <lex t.
g satisfy that either g(s) > min s or g(s) undefined for every
s. We say that g is progressive.
If H is such that for every s ∈ [H]!ω, g(s) /∈ H, then for every
s, t ∈ [H]!ω, f (s) ̸= f (t) otherwise we would have
g(s) = min(t \ s) ∈ H.
Hence H is an f -rainbow.



g can be seen as blocking some elements that would prevent a set
H from being an f -rainbow.
It is an instance of the free set theorem, but the added assumption
that g(s) > min s allow us to have the strong cone avoidance.

For every s ⊆ N such that |s| ≤ min s (i.e. not ω-large), s
induce a coloring f (s, ·) : [N]min s−|s|+1 → N
This is a coloring of tuple of a fixed length.
We can then use the thin set theorem and the free set theorem
for tuple of a fixed size.

The set H is then constructed by forcing.
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