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Part 1: A quick introduction
to the enumeration degrees



The enumeration degrees

Definition (Rogers 1957). A ⊆ ω is enumeration reducible to
B ⊆ ω (A ≤e B) if there is a uniform procedure to enumerate A from
any enumeration of B.

Here, an enumeration of B ⊆ ω is any f ∈ ωω with range(f) = B.
(Fine, add a padding symbol for the empty set.)

Thm. (Selman 1971). Equivalently, we can drop the uniformity.

Sticking with uniformity, the definition is usually written as:
Definition. A ≤e B if there is a c.e. set Γ such that

A = {n : (∃e) ⟨n, e⟩ ∈ Γ and De ⊆ B},
where De is the eth finite set. We call Γ an enumeration operator.

The induced degree structure De is the enumeration degrees. It is an
upper semi-lattice with a least element (the degree of all c.e. sets).
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The total enumeration degrees

Proposition. X ≤T Y iff X ⊕X is Y -c.e. iff X ⊕X ≤e Y ⊕ Y .

This suggests a natural embedding of the Turing degrees into the
enumeration degrees.

Proposition. The embedding ι : DT → De, defined by

ι(dT (X)) = de(X ⊕X),

preserves the order and the least upper bound.

Definition. The total degrees are the image of the Turing degrees
under this embedding (i.e., they are the enumeration degrees that
contain a set of the form X ⊕X).

▶ An e-degree is total iff it contains the graph a total function.

▶ The degrees of (graphs of) enumerations of A are exactly the
total degrees above A. By Selman’s theorem, these determine the
e-degree of A.
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Quasiminimality

The first construction of a nontotal enumeration degree had an
interesting property.

Definition. A non-c.e. set A ⊆ ω has quasiminimal enumeration
degree if X ⊕X ≤e A implies that X is computable.

I.e., dege(A) ̸= 0e and the only total degree below dege(A) is 0e.

▶ (Medvedev 1955) There is a quasiminimal enumeration degree.

▶ (Myhill 1961) The sets with quasiminimal e-degree are comeager.
(Copestake 1988) 1-generic sets have quasiminimal e-degree.

▶ (Lagemann 1971) Almost every set has quasiminimal e-degree.

▶ (McEvoy 1985) Every total degree above 0′
e is the jump of a

quasiminimal e-degree.

▶ (Arslanov, Cooper, and Kalimullin 2003) Semicomputable sets
that are not c.e. or co-c.e. have quasiminimal e-degree.
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Part 2: Quasiminimality
and measure/randomness

(with Cholak and Soskova)



Lagemann’s results

In his dissertation, Lagemann gave the first results involving measure
and the enumeration degrees (verifying conjectures of John Case).

“I wrote my dissertation on a hopelessly abstruse topic in
mathematical logic. . . ” – Jay Lagemann

Theorem (Lagemann 1971)
(1) A |e A for almost every A ⊆ ω.

(2) Almost every A is quasiminimal.

▶ Note that the first result follows easily from the second.

▶ We will sketch a proof of (2).

▶ Then we will show that every weakly 2-random is quasiminimal.
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A little probability / combinatorics

At a key step, Lagemann claims that, for a fixed enumeration
operator Γ and a random A ⊆ ω,

Pr(m ∈ ΓA | n ∈ ΓA) ≥ Pr(m ∈ ΓA).

He says that this “inequality holds because [Γ] is an enumeration
operator. The condition [n ∈ ΓA] only forces A to contain more
members which by the monotonicity of enumeration operators makes
it more likely that [m ∈ ΓA].”

We capture this idea using “upsets”: M ⊆ 2k is an upset if whenever
σ ∈M and σ ⊆ τ ∈ 2k, then τ ∈M . (Forgive the abuse of notation.)

Theorem (Harris 1960; Kleitman 1966). If M,N ⊆ 2k are
upsets, then

|M ∩N |
2k

≥ |M |
2k

· |N |
2k

.
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A little probability / combinatorics

Theorem (Harris 1960; Kleitman 1966). If M,N ⊆ 2k are
upsets, then

|M ∩N |
2k

≥ |M |
2k

· |N |
2k

.

The Harris–Kleitman inequality states that upsets are non-negatively
correlated. In other words,

Pr(σ ∈M | σ ∈ N) ≥ Pr(σ ∈M).

Extending the notion of upset to subsets of 2ω (i.e., subsets of P(ω)):

The Harris–Kleitman inequality on 2ω. If M,N ⊆ 2ω are
measurable upsets, then

µ(M ∩N) ≥ µ(M)µ(N).
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Almost every set has quasiminimal e-degree

Theorem (Lagemann 1971). Almost every A is quasiminimal.

Proof. Fix an enumeration operator Γ and assume, for a
contradiction, that

P = {A ∈ 2ω : (∃X) X is not computable and ΓA = X ⊕X}
has positive measure.

▶ By Lebesgue density, there is a σ ∈ 2<ω such that the relative
measure of P above σ is as large as we like, say

µ(P ∩ [σ])

µ([σ])
>

6

7
.

▶ We could “hard-code” σ into Γ, so without loss of generality,
assume that µ(P ) > 6/7.

▶ Goal: find a partition P = P0 ⊔ P1 such that µ(P0), µ(P1) > 3/7
and if A0 ∈ P0 and A1 ∈ P1, then ΓA0 ̸= ΓA1 .
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Almost every set has quasiminimal e-degree

Proof (cont.).
▶ Consider the measure λ such that, for each Borel M ⊆ 2ω,

λ(M) = µ {A ∈ P : (∃X ∈M) ΓA = X ⊕X}.

▶ Essentially, λ is the push-forward of µ ↾P under Γ. In particular,
λ(2ω) = µ(P ) > 6/7.

▶ Note that λ is atomless because if X is noncomputable, then

µ {A ∈ 2ω : X ⊕X ≤e A} ≤ µ {A ∈ 2ω : X ≤T A} = 0

(De Leeuw, Moore, Shannon, and Shapiro 1956; Sacks 1963).

▶ Since λ is atomless, it is as small as we like on all neighborhoods
in a sufficiently fine clopen partition of 2ω.

▶ Take M0, M1 to be disjoint clopen sets with λ(Mi) > 3/7 for
each i ∈ {0, 1}.
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Almost every set has quasiminimal e-degree

Proof (cont.).
▶ Take M0, M1 to be disjoint clopen sets with λ(Mi) > 3/7 for

each i ∈ {0, 1}.

▶ Let Pi = {A ∈ P : (∃X ∈Mi) Γ
A = X ⊕X} for each i ∈ {0, 1}.

Note that µ(Pi) = λ(Mi) > 3/7.

▶ If A0 ∈ P0 and A1 ∈ P1, then ΓA0 ̸= ΓA1 . Thus, if A0, A1 ⊆ C,
then ΓC does not have the form X ⊕X, and so C /∈ P .

▶ Let P̌i be the upset generated by Pi for each i ∈ {0, 1}. By
above, P̌0 ∩ P̌1 is disjoint from P .

▶ Using the Harris–Kleitman inequality,

1/7 > µ(P̌0 ∩ P̌1) ≥ µ(P̌0)µ(P̌1) ≥ µ(P0)µ(P1) > (3/7)2 = 9/49,

which is a contradiction.
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Every weakly 2-random has quasiminimal e-degree

For an enumeration operator Γ, consider the class

Q = {A ∈ 2ω : (∃X) ΓA = X ⊕X and A is not X-random}.

Claim. µ(Q) = 0.

Proof. Almost all A are 1-random and quasiminimal. Such an A is
not in Q because it cannot be derandomized by a computable X.

Claim. Q is a Π0
2 class.

Proof. Let {U□
n }n∈ω be a universal oracle Martin-Löf test. Then,

A ∈ Q if and only if

▶ (∀n)(∀s) ¬(2n, 2n+ 1 ∈ ΓAs ),

▶ (∀n)(∃s) 2n ∈ ΓAs or 2n+ 1 ∈ ΓAs , and

▶ (∀n)(∃s)(∃σ ∈ 2<ω) σ ⊕ σ ⊆ ΓAs and A ∈ Uσn,s.
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Every weakly 2-random has quasiminimal e-degree

For an enumeration operator Γ, consider the class

Q = {A ∈ 2ω : (∃X) ΓA = X ⊕X and A is not X-random}.

Claim. Q is a measure zero Π0
2 class.

Theorem (Cholak, M., Soskova). If A is weakly 2-random, then
it has quasiminimal e-degree.

Proof. Assume that ΓA = X ⊕X for some enumeration operator Γ.

▶ Note that A /∈ Q, so A must be random relative to X.

▶ But A computes X, so X is a base for 1-randomness (hence
K-trivial). This implies that X is ∆0

2.

▶ However, weak 2-random sets cannot compute noncomputable
∆0

2 sets, so X must be computable.
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Collecting our thoughts

The use of K-triviality is a little surprising. Is it avoidable?

Question. Is there a more “natural” proof that weakly 2-random sets
have quasiminimal enumeration degree?

Fact. Not every 1-random set has quasiminimal enumeration degree.

▶ Ω ≥e Ω. Therefore, Ω ≡e ∅′ ⊕ ∅′, so it has total degree.

▶ Similarly, Ω⊕ Ω∅′ has total degree equivalent to ∅′′ ⊕ ∅′′.
▶ Using a result of Hirschfeldt, Jockusch, Kuyper, and Schupp,

“Coarse reducibility and algorithmic randomness,” 2016, we show:

Corollary. If X ≤T ∅′ is 1-random, then it does not have
quasiminimal enumeration degree.

Question. Is there a 1-random that has quasiminimal e-degree but is
not weakly 2-random?
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The partial computable extension property

Kalimullin and Puzarenko (2004) introduced a property stronger than
quasiminimality (prefigured by Copestake 1988). Let Gψ ⊆ ω2 denote
the graph of a partial function ψ : ω → ω.

Definition. A ⊆ ω has the partial computable extension property
(PCEP) if whenever Gψ ≤e A, there is a partial computable φ ⊇ ψ.

▶ X ⊕X ≡e G1X
, where 1X is the characteristic function of X.

⇒ If A has the PCEP and X ⊕X ≤e A, then X is computable.

⇒ If A has the PCEP, it has quasiminimal degree (or is c.e.).

▶ Simple constructions of quasiminimal sets usually yield the
PCEP, e.g., 1-generic and nontrivial semicomputable sets.

But not graphs of 1-generic partial functions (Copestake 1988).

▶ (Cholak, M., Soskova) No 1-random has the PCEP.
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Part 3: Randomness relative
to an enumeration oracle

(with Greenberg and Soskova)



Using an enumeration oracle

▶ Most fundamental notions in effective randomness can be
expressed in terms of c.e. sets.

▶ E.g., Σ0
1 class, Martin-Löf test, Solovay test, left-c.e.

semimeasure, Kolmogorov complexity, . . .

▶ We relativize these notions to a Turing oracle X using X-c.e. sets
(not X-computable sets).

▶ Main Idea. To relativize to an enumeration oracle A, simply
replace “X-c.e.” with “≤e A”.

Definition. Consider a set of strings W ⊆ 2<ω such that W ≤e A.
We call [W ] = {X ∈ 2ω : (∃σ ∈W ) σ ≺ X} a Σ0

1⟨A⟩ class.

▶ We use ⟨A⟩ to indicate that A is an enumeration oracle.
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Using an enumeration oracle

▶ We use ⟨A⟩ to indicate that A is an enumeration oracle.

▶ Note: a Σ0
1⟨X ⊕X⟩ class is just a Σ0

1(X) class in the usual sense.

▶ The complement of a Σ0
1⟨A⟩ class is a Π0

1⟨A⟩ class.

Aside. These notions have proved useful. For example:

The continuous degrees are the degrees of points in computable metric
spaces. They properly extend the Turing degrees and properly embed
into the enumeration degrees (M. 2004).

Theorem (Andrews, Igusa, M., Soskova 2019). TFAE:
(1) A ⊆ ω has continuous enumeration degree,
(2) There is a nonempty Π0

1⟨A⟩ class P such that A is (uniformly)
X-c.e. for every X ∈ P , and

(3) A has almost total enumeration degree: whenever b ≰ dege(A) is
total, dege(A) ∨ b is also total.
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Defining ⟨A⟩-randomness

Definition. A Kučera ⟨A⟩-test is a Σ0
1⟨A⟩ class U of measure less

than one. We say that Z ∈ 2ω fails this test if every tail of Z is in U .
We call Z ⟨A⟩-random if it fails no Kučera ⟨A⟩-tests.

We can also define Martin-Löf ⟨A⟩-tests and ⟨A⟩-enumerable
(super)martingales. The resulting randomness notions are equivalent
to ⟨A⟩-randomness.

Not everything works so well. Depending on A,

▶ Solovay ⟨A⟩-tests might give a weaker notion, at least if viewed as
sets of strings ≤e A of finite weight.

▶ So might prefix-free complexity relative to ⟨A⟩ (even if defined in
terms of “request sets”).

▶ There might not be a universal ⟨A⟩-test.

Of course, things work as expected for total enumeration degrees:
⟨X ⊕X⟩-randomness is just X-randomness.
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Why do things go wrong?

Given a fixed enumeration of A, we can

(1) Uniformly enumerate a prefix-free set of strings that generate the
eth Σ0

1⟨A⟩ class. (Prefix-free sets are used in many basic proofs.)

(2) Uniformly enumerate strings that generate the eth Σ0
1⟨A⟩ class,

but stop if the class is about to violate a given measure bound.
(Restricting measure is used to build universal tests.)

However, different enumerations of A would usually result in different
prefix-free sets in (1), or different subclasses in (2).

▶ It is possible to have a Σ0
1⟨A⟩ class that is not generated by any

prefix-free set of strings ≤e A.

▶ Sometimes we can find a different proof, e.g., to prove that every
Kučera ⟨A⟩-test is covered by a Martin-Löf ⟨A⟩-test.

▶ Other times. . . well, this talk will not focus on separations
between ⟨A⟩-randomness notions.
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What is our focus?

▶ We want to compare ⟨A⟩-randomness to randomness relative to
the total degrees above and below A.

▶ In part, to show that ⟨A⟩-randomness is not easily captured by
randomness relative to Turing oracles.

▶ (Recall that dege(A) is uniquely determined by the total degrees
above A.)

▶ It will be important whether or not there is a universal ⟨A⟩-test.

Proposition. There is a universal Kučera ⟨A⟩-test
⇐⇒ there is a universal Martin-Löf ⟨A⟩-test
⇐⇒ there is a universal ⟨A⟩-enumerable (super)martingale

⇐⇒ there is a positive measure Π0
1⟨A⟩ class containing only

⟨A⟩-randoms.
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Interaction with total oracles

Theorem (Greenberg, M., Soskova). For a set A ⊆ ω and
sequence Z ∈ 2ω, consider the following notions:

(i) Z is X-random for some X such that A ≤e X ⊕X,
(ii) Z is ⟨A⟩-random,
(iii) Z is Y -random for every Y such that Y ⊕ Y ≤e A.

Then (i) ⇒ (ii) ⇒ (iii). Furthermore, each implications can be strict.

▶ The implications are easy: if A ≤e B, then ⟨B⟩-randomness
implies ⟨A⟩-randomness.

▶ It is not hard to show that A is never ⟨A⟩-random.

▶ If A is weakly 2-random, then A is random relative to every total
degree below A (it is quasiminimal!), but not ⟨A⟩-random.
Therefore, (iii) ⇏ (ii) for A.
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Lowness for randomness

I owe you an example for which (ii) ⇏ (i), but first:

Definition. For a set A, we say that ⟨A⟩ is low for randomness if
every 1-random is ⟨A⟩-random.

▶ In this case, (iii) ⇒ (ii) for A.

▶ 1-generic and nontrivial semicomputable sets are low for
randomness in the enumeration degrees.

▶ It should not be surprising that these examples are quasiminimal.
Lowness for randomness is closed downward and only countably
many total degrees are low for randomness: dege(X ⊕X) where
X is K-trivial.

▶ We know that not every quasiminimal e-degree is low for
randomness: weakly 2-randoms.

▶ Good question! But no, not every A with the partial computable
extension property is low for randomness.
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A couple of examples

Lemma. Assume that A is weakly 1-generic relative to Z. If A is
X-c.e., then Z is not X-random.

Example. Let A be weakly 2-generic.
▶ A is low for randomness.
▶ A is weakly 1-generic relative to Ω. So, by the lemma, if
A ≤e X ⊕X, then Ω is not X-random.

▶ Therefore, (ii) ⇏ (i) for A.

When does (iii) ⇒ (i) for A? I.e., when are all three equivalent? This
is true for total degrees, vacuously, but also for some nontotal degrees.

Example. Let X be a noncomputable K-trivial.
▶ Let A ≤e X ⊕X be nontotal. (Jockusch (1968) proved that if
X ≰T ∅, then there is a nontrivial semicomputable set A ≡T X.)

▶ Every 1-random is X-random, so (i) ⇔ (ii) ⇔ (iii) for A.
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Trivial and nontrivial implications

The previous example feels a little too “trivial”. Recall:
(i) Z is X-random for some X such that A ≤e X ⊕X,
(ii) Z is ⟨A⟩-random,
(iii) Z is Y -random for every Y such that Y ⊕ Y ≤e A.

Definition. For A ⊆ ω, we say that
▶ (ii) ⇒ (i) trivially for A if there is an X such that A ≤e X ⊕X

and ⟨X ⊕X⟩ is low for randomness with respect to ⟨A⟩.
▶ (iii) ⇒ (ii) trivially for A if there is a Y such that Y ⊕ Y ≤e A

and ⟨A⟩ is low for randomness with respect to ⟨Y ⊕ Y ⟩.

We will see that each of (iii) ⇒ (ii) and (ii) ⇒ (i) can hold
nontrivally for A.

▶ But not both at the same time!

▶ And it matters whether or not there is a universal ⟨A⟩-test.
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How does it all relate?

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially

U
ni

ve
rs

al
⟨A

⟩-
te

st
N

o
un

iv
er

sa
l

⟨A
⟩-

te
st

The interaction of ⟨A⟩-randomness, the total degrees above and below
the degree of A, and whether or not there is a universal ⟨A⟩-test.

24 / 38



Generics and randoms

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially

U
ni

ve
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al
⟨A

⟩-
te

st
N

o
un
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er
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l

⟨A
⟩-

te
st

Weakly 2-generics are here.
I don’t know where sufficiently random sets belong.
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The total degrees and our “trivial” example

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially

U
ni

ve
rs

al
⟨A

⟩-
te

st
N

o
un

iv
er

sa
l

⟨A
⟩-

te
st

A set A is here iff there are X and Y s.t. Y ⊕ Y ≤e A ≤e X ⊕X
and ⟨X ⊕X⟩ is low for randomness with respect to ⟨Y ⊕ Y ⟩.
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When does (iii) ⇒ (i) for A?

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially

U
ni

ve
rs

al
⟨A

⟩-
te

st
N

o
un

iv
er

sa
l

⟨A
⟩-

te
st

Note that this is only possible when (iii) ⇒ (ii) trivially for A.

Question. Does it also imply that (ii) ⇒ (i) trivially for A?
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When does (iii) ⇒ (i) for A?

As we just noted, (iii) ⇒ (ii) trivially for A: there is a Y such that
Y ⊕ Y ≤e A and ⟨A⟩ is low for randomness with respect to ⟨Y ⊕ Y ⟩.

We might as well focus on the case where Y = ∅.

Definition. We say that ⟨A⟩ is strongly low for randomness if every
1-random is random relative to some total degree above A.

Our “trivial” example has this property. Is it the only example?

Question. If ⟨A⟩ is strongly low for randomness, must some total
degree above A be low for randomness?

Let us rephrase the question, removing defined terms.

Question. If for every 1-random Z there is an X such that A is
X-c.e. and Z is X-random, must A be c.e. in some K-trivial?

If A is a counterexample, then (ii) ⇒ (i) nontrivially for A.
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When does (ii) ⇒ (i) nontrivially for A?

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially

U
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⟩-
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⟨A
⟩-
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The only examples we have are the “diagonally not computably
diagonalizable” continuous degrees.
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The continuous enumeration degrees

Recall. The continuous degrees are the degrees of points in
computable metric spaces. . . . A has continuous e-degree ⇐⇒ there is
a nonempty Π0

1⟨A⟩ class P such that A is X-c.e. for every X ∈ P .
(We only need ⇒, the easy direction.)

Proposition. Assume that A has continuous enumeration degree.
Then there is a universal ⟨A⟩-test and (ii) ⇒ (i) for A.

Proof. Let UX be a universal Kučera X-test for every X.

▶ Then V =
⋂
X∈P U

X is a Σ0
1⟨A⟩ class (by compactness).

▶ But if X ∈ P , then A ≤e X ⊕X, so V contains all
non-⟨A⟩-randoms. It also has measure less than one.

▶ Therefore, V is a universal Kučera ⟨A⟩-test.
▶ Finally, if Z is ⟨A⟩-random, then it passes V . But then it passes
UX for some X, so it is X-random for some X ∈ P .
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The nontotal continuous e-degrees

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially
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Every A with nontotal continuous e-degree is somewhere here.
But if Y ⊕ Y ≤e A, then ⟨A⟩ bounds a member of each nonempty
Π0

1(Y ) class (M. 2004). So ⟨A⟩ is not low for randomness w.r.t. Y ⊕Y .
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Diagonally not computably diagonalizable (DNCD)

My original proof that nontotal continuous degrees exist produced a
DNCD sequence. This is an α ∈ [0, 1]N (the Hilbert cube) such that

(∀e) ψαe ↓ =⇒ α(e) = ψαe ,

where ψe is the eth partial computable function [0, 1]N → [0, 1].

▶ The continuous degrees embed naturally into the e-degrees.

▶ If A ⊆ ω “codes” α, then A has nontotal continuous e-degree.

▶ If A ≤e X ⊕X, then X computes a path in each nonempty
Π0

1⟨A⟩ class.

Idea. Given two Σ0
1⟨A⟩ predicates P0 and P1, consider ψαe such

that if only Pi holds, then ψαe = 1− i.A total degree above A can
uniformly find ie ∈ {0, 1} such that α(e) ̸= ie.

▶ Hence, ⟨X ⊕X⟩ is not low for randomness with respect to ⟨A⟩.

▶ Therefore, (ii) ⇒ (i) nontrivially for A.
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When does (ii) ⇒ (i) nontrivially for A?

Question. If (ii) ⇒ (i) nontrivially for A, must A have DNCD
degree? Nontotal continuous degree?

If so, then every e-degree that is strongly low for randomness would
be bounded by a total degrees that is low for randomness.

Question. Does (ii) ⇒ (i) nontrivially for every nontotal continuous
enumeration degree?

The previous question is a variation of one I’ve had for a while.

Question. Does every nontotal continuous degree contain a DNCD
sequence?

Aside. Bauer and Hanson recently used a DNCD sequence to
construct a topos in which there are countably many (Dedekind) real
numbers.
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An example with no universal test

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially
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The ⟨self⟩-PA enumeration degrees are here. They are the easiest
examples without universal tests.
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⟨self⟩-PA degrees

Definition. A set A is ⟨self ⟩-PA if for every nonempty Π0
1⟨A⟩ class

P ⊆ 2ω, there is an Y ∈ P such that Y ⊕ Y ≤e A.

▶ These are not hard to construct.

• Fix sets B0≪B1≪B2≪· · · , each PA over the previous one.
• On stage 2e, copy Be into the (tail of) the eth column of A.
• On stage 2e+ 1, add finitely much to A in columns > e to

make the eth Π0
1⟨A⟩ class empty, if possible.

• If you can’t, then it has a nonempty Π0
1⟨A[≤e]⟩ subclass.

• But Be+1, hence A, bounds a member of such a class.

▶ There cannot be a universal ⟨A⟩-test. Otherwise, we would have
a nonempty Π0

1⟨A⟩ class containing only ⟨A⟩-randoms.

▶ It is also not hard to prove that (iii) ⇒ (ii) (nontrivially) for A.
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An interesting quasiminimal example

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially
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For this case, we built an A with the partial computable extension
property such that ⟨A⟩-randomness is equivalent to 3-randomness.
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An interesting quasiminimal example

Proposition. For every X, there is an X-c.e. set A ⊆ 2<ω such that

(1) [A] is a universal Kučera X-test, and
(2) A is c.e. or has quasiminimal enumeration degree. (In fact, A has

the partial computable extension property.)

▶ By (1), [A] is a Kučera ⟨A⟩-test that contains every
non-X-random, so every ⟨A⟩-random sequence is X-random.

▶ Also A ≤e X ⊕X, so every X-random sequence is ⟨A⟩-random.

▶ Therefore, ⟨A⟩-randomness is equivalent to X-randomness, and
[A] is a universal Kučera ⟨A⟩-test.

If we take X = ∅′′, for example, we get an A with the PCEP such
that ⟨A⟩-randomness is equivalent to 3-randomness. As promised,
(iii) ⇏ (ii), (ii) ⇒ (i) trivially for A, and there’s a universal ⟨A⟩-test.
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Finally, what about when (iii) ⇏ (ii) ⇏ (i)?

(ii) ⇏ (i)

! ! !

! ! ?

!

%

!

(ii) ⇒ (i)
trivially

(ii) ⇒ (i)
nontrivially

(iii) ⇏ (ii)

(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially %

(iii) ⇏ (ii)

%
(iii) ⇒ (ii)
trivially

(iii) ⇒ (ii)
nontrivially
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If A is from and B is sufficiently generic, then A⊕B is here.
I only know a somewhat difficult construction for this case.
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Thank you!


