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Theorem        The following are equivalent:

(1)    a one-way function

(2)  almost -optimal compression is hard on D-average,
for some distribution D, which is efficiently-samplable

The result follows by combining

Ilango, Ren, Santhanam, STOC 2022
+
Bauwens, Zimand , J ACM  2023

7

↑



Basic primitive in cryptography.

-private -key encryption
-zero-knowledge proofs
-digital signatures
-commitment schemes

public-key encryption     NO

OWF

OWF x-> f(x)

-

-

-

⑧

6

⑧



Do OWF exist?

Liu Pass
(2020)

probabilistic polynomial time

No
, if P =NP

FACTORING , DISCRETE LOG
,
SHORTEST VECTOR PROBLEM

↓,
believed to be OWF

poly-time
&

OWF exist >K is weakly hard

on average cover uniform distribution(

# problem : Givenx
,
time-bound t

& ind K
*
(x) (time-bounded Kolmogora complexity)

weakly hard...: Any PPT algorithm fails on

>yus fraction of x50 , 132

"PPT" :



After [Liu, Pass 2020] many other results of the type:

OWF exist) Some problem for time-bounded

Kolm . Complexity is hard
in some sense

IIlango , Ren , Santhanam
,
2022]

OWFexist ES some problem for Kolm . complexity
is hard #

unbounded
version



Kolmogorov complexity

Fix U
,
universal Turing machine

with prefix-free domain

U maps input ped0 , 13
*

into output x-d0 ,
13
*

or

"U(P) undefined
"

Domain of r : prefix-free set

k(x) = min((p)(U(p =x)
↳
optimal description (or program

for x



DISTRIBUTIONS

· Ensemble D = (Dn) neI,
Du distrib . over 50 , 132

· Dis samplable if I algorithm SAP

An
,
+x + 40 , 13

Prob[SAMP(() =x] = Du(x).

· If SAMP is PPT , D is poly-time samplable



INVERTER

INVERTER

ESTIMATOR

ESTIMATOR

THEORER [IRS 2022] The following are equivalent :

(1) 7 OWF
11

(2) K is hard to approximate on average for

some poly-time samplable distribution

I

7 OINF

-> f : 30 , 15 -50 , 13 , poly-time commutable
,
s .
t.

79EIN ,
I PPT aly. , a .en

Probl (i
,
f(x) #f(f(x)] <,a

XUn ↓ Arand . of INVERTER
Prob [fail]2, 1 m

can be replaced by 1-meg (n)

I

K is hard to approx . On aug . for some effic . Sampl
distribution

-

7 poly-time samplable distribution D = (DuLueN

Hc # DPT alg. Ha . e u

Prob[ (x) # (k(x) - clogn ,
K(x) + c- logn)] <o

XDu ↓
ranil Of ESTINATOR Prob[fail] <, 1/100



THEOREM1 LIRS 2022] The following are equivalent

(1)I OE

(2) K is hard to approximate on average for some

p-time samplable distribution

THEOREM2 [Bauwens
,
Zimand]

Findingmyk(> Finding
in PPT an almost optimal

p-time program for X
reductions

7 PPT alg .
COMPRESSOR

· I (X , M . E) returns a string 2 ,
121 = M + Ollogm · log

· If m > k(x)
,

Prob [Z program forx] 1-d.

Th .
1 + Th

.
2

THEOREM
. The following are equivalent

(1) 7 OWF

(2) Almost optimal compression is hard on average for some
p-time samplable distribution

↓
Given X : find a program Pforx of length K(x) +O(logn (



KOLMOGOROv complexity vS. SAMPLABLE DISTRIBUTIONS

LEMMA1 : If D is samplable

Prob [K(x) = log) + logn] <, 1- 2-n
XDm

Proofi Coding--

LEMMA2 : For every distrib .
D
,

Prob [K(X)
, log ix) - Plogn]1-it

XDn

Proof : Kraft-chaitin ineg
.

--

So : For every samplable D

Estimating k(x) Estimating D(x) .
with high D-prob. with high D-prob.



INVERTER

INVERTER

INVERTER

INVERTER

ESTIMATOR

ESTIMATOR

ESTIMATOR

THEOREM The following are equivalent :

(1) 7 OIF

(2) 7 poly-time sampl . D which is hard

to approximate on D-average

Proof by showing contrapositives.

I Up-time I has =>Hp-time sampl . D

has ESTIMATOR

↓ polyin)
,

7 PPT aly . ,
i . on

Prob [ (x) = -)(x], 1- pyes
x+Un

(n)

* polyin)
,

7 PPT alg . , i .o . n

Prob [ (x)[]], 1- potyms as

XI D

I Xp-time sampl . D has => I poly-time f

has



use pairwise-indep -hashing +
Left over hash lemma

use "Short lists for short programs in short time "

SAMP  (y)

INVERTER

ESTIMATOR

I H poly-time f has =#p-time samplable D

has

Prof . Take D = (Du)
,
p-time samplable

Prob[SAMP(in) = y] = D(y)
↑

PPTalg ., uses m random bits
,
m = poly (2)

· Using INVERTER , given y , we can find an element of SAMPsy)

· But we want to estimate #
- A

· SOLUTION A :

· SOLUTION B :



Left-over hash lemma

family of 2-wise indep. hash functions

Recall STATISTICAL DISTANCE between distributions:

· SOLUTION A :

Hm
,

= [h : 40 , 13-30 ,13 2loga

12= 50 , 13 K-2 log' For every <10 , 13m with #Sc, 2
"

hir) (h .

h (r) ( -InIn Fu
#S,2 Hm

k
S #m

,
40 , 14

(H
,
H(Vs)) = (H, Up

D,D2 : H event A
,
/D

,
(A)-D/A) - E



SAMP  (y)

INVERTER

Function f:

input : (n , K , h ,
r) netm

y = SAMP(1 , r)
r = 50 , 13m

output (n , y ,
K
,
h

, h(r)

on input (n ,Y ,K , h , her
- A

has to find r'E

h(rl = h(r)



SAMP  (y)

SAMP  (y)

INVERTER

( n, k, y, h, h(r))

( n, k, y, h, h(r))

Function f:

input : (n , K , h , r)heHm,
r = 50 , 13m

y = SAMP (1 , r(

output

f is poly. - time computable

Assumption = JPDT INVERTER
,

i
. O . N

Prob [ (2) = -" (2)], 1-in
k4 [m]

has Hm,

ran40 ,
132

2 = El ,k , h , r) =

- A
Given y ,

we want to estimate #

(because D(y) = # -1/2m)



SAMP  (y)

SAMP  (y)

SAMP  (y)

SAMP  (y)

SAMP  (y)

SAMP  (y)

INVERTER

SAMP  (y)

( n, k, y, h, v )

- A
Given y , we want to estimate #

For each he [m] (2" is our guess for (

we do E(k , y) :

- choose random heHmk ,
ve50 , 13

"

- if finds a pre-image of
INVERTER SUCCEEDS

return 1
,
else 0. when

v = h(r)
↓

so
, finds re

- A & h(r) =y

() If k large (meaning : 2 > 4 . #
-

d)
Prob[E(k ,y) = 1] is small

Why : Most v in 50 ,
13"are not hashes of elemts in

- A

(2) Ifa small (meaning : 2#
- (

Prob[E(k ,y) = 1) is large

Why : (4 ,x) ~g (h , hirs)

(1)+ (2) : we can approximate #
-
in PPT

.



SAMP  (y)

SAMP  (y) SAMP  (y)

SAMP  (y)

SAMP  (y)

large

-
-

CaseI If 27 4 . #
- A

then ProblE(k , y) = 1] i

For every h,
- A

-h(
-

1)

So: h)
-

1) = + 24

So : & fraction of ve50 ,
13"

cannot be in h (
-

n)

So : Prob of success4



SAMP  (y)

SAMP  (y)

SAMP  (y)

( n, k, y, h, h(r))

(n, k, y, h, v)

-k small

C2 If 2" = Je #
- A

then Prob[E(k ,3) = 1], 2 - 0 (2)

Consider the following 2 distributions :

D: sample haHu1
"So , 13"

output

- A

D2 : sample haHm, k
,

output

Leftover hash lemma : statistical dist(D ..D2)#

Hm
,k
2-wise indep family => 18 (Case 2)



ProblE(K ,y) =0] = J + ProbLiNY .

(n , Y , K , hihirs) fails]

Di B2

Y is good if this =G for all k

in <, PrENV ·
fails], Pr[ybad fork] - - in

D2

=> Pr [ybad]% = Gr[yisgood], 1-
N

conditioned on "Y good"
, for every I

Prob[E(k ,y) =0] < + 18=4



SAMP  (y) SAMP  (y)

SAMP  (y) SAMP  (y).... - +
+

4. . .
-- zu

64
-
-

K If 2"here
If I here

E(k , y) = 1 w. prob 11/4
E(k ,y) = 1

W . Prob >, -7
For K = 1

,
2, ...,W

Repeat E(k ,y) i times

Output largest 1 for which I" successes
1 i

↓

"Success" when E(k ,y) = 1

With high prob:

#
- A

= 24 . #
- A



use "Short lists for short programs in short time "

LIST (X )

LIST (X )

LIST (X )

THEOREM (Bauwens-Makhlin-Vereshchagin-Z. 2012, Teutsch 2012, Z 2013)

There exists poly-time alg. A and const. C

-on input n-bit x, A  prints with n   strings

y
 -on input n-bit x, ' A prints contains a program p of  x given y with

has the same number of elements of length 

for every

SOLUTION B :

LIST

7
-

-H
,

(Pl = ((x1y)+ST

- 1 = [(x) + CNiv . ko2+] ,
l



INVERTER

SAMP  (y)

SAMP  (y)

LIST (r)

LIST (r)

INVERTER

Function f

input : (n , r , e (

y = SAMP (1 , r(

output (n , y ,
9, e

f is poly-time computable

Assumption => I PDT set. for i . o . n :

Prob [ (2) = f(2)], 1- ↓mon
- 40 , 14m

27s[m]
y = SAMP))" , r)

z = (n , y ,

9
,

C
(

- A

Given y ,
we want to estimate #

(because D(y) = #
-1/2m)



SAMP  (y)

SAMP  (y)

SAMP  (y)

SAMP  (y)

INVERTER

SAMP  (y)

LIST (r)

LIST (r)

SAMP  (y)

SAMP  (y)

(n, y, l, v)

LIST(r)

- A

PROCEDURE : On Inputy ,

estimate #

For each he [m] (2"is our guess for #
- A

we do E(k , y) :

- Choose random le[m]
,
ve50 , 132

- if finds a pre-image of
INVERTER Succeeds

return 1
,
else 0. when

↓
V =

C

so
, finds re

-
&

e
=v

k+ 1 - A

(1) If k large (meaning : 2 7 2..m" # (
Prob [E(k ,y) = 1] is small (5)

Why : Most v in do , 13*"are not in m
- A

rE

(2) IC I small (meaning : 2 = 2
Ent

. #
- )

ProblEtiy] = 17 is large (int)
Why : NEXT SLIDE

- A

(1)+ (2) : we can approximate # in PPT
.



SAMP  (y)
SAMP  (y)

SAMP  (y)

SAMP  (y)

SAMP  (y)

SAMP  (y)

SAMP  (y)

INVERTER

INVERTER

LIST (r)

LIST (r)

is small : K= log(#
**

(+NIV.Ko

+ C + 1
LIST

- AFor every re :

· Crly) loght
- A ) + UNIV

.KOLT

· Jr * in program forr with

Ir
+= log(#

- A

( + CNN.KOLMTCIST
= 17

So : EvIveU , wKedre
-13

- A

rE

- A

size = #

=+ #40 , 13
*

fails on this set with prob
.

1
NEXT SLIDE

So
, succeeds. prob <, 1-t

So : succeeds on do ,iprob

Prob[E(k ,y) = 1]



INVERTER

INVERTER

INVERTER

LIST (r)

LIST (r)

LIST (r)

LIST (r)

EVALUATION of FAIL probability

ASSUMPTION :

↓ > Probl (n
, y . 9 , (faits]l

m-v

L, Probl (... ) fails/1 el =3.

Prob[1 el =k]

=
uni. Kont

So : Prob[ (... ) fits/ I el =k]

M
min



COMPARING SOLUTION A and SOLUTION B

SOLUTION A -Left-over hash Lemma

SOLUTION B -Short lists w. short programs

Su
,
K

,
w
,
h) [* (w ,

K
, SAMPCr) , h , h(r)

↓

length = 2m

(v
,
r
, e)- (u

,
SAMP(O)

,
C
, LIST(r)e

↓
length = M



INVERTER

INVERTER

(with
2 proofs)

I Hpoly-timef has =>Hp-time sampl . D
has ESTIMATOR

#H poly-sampl .D has ESTIMATOR > H poly-time f

has

just a Sketch



poly-sampl. D has ESTIMATOR => 
poly-time f  has INVERTER
I H

H

Proof (sketch

Suppose If poly-time ,
has no INVERTER

5o is OINF

[H1LL'99]
113

= 7 p . r. g 6 : 50 ,32 -> 50 , 134

H
no PPTalg .

A can distinguish (G/Us) , Un)
(PrIAIGIUs()= 1] - Pr[Alu) =1]/<

Distribution D : EG(U) + Un

113

G(Vy13) has Kolm· complexity [U W. Probous=
so DIG /Vul/g) is large

U
N
has Kolm . Complexity <, n-logn W . prob 1-t

Un
so D (Un) is small

Distribution D is poly-time samplable

has poly-time ESTIMATOM

Distinguisher breaking p . r. g. &




