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The Posner-Robinson Theorem

Theorem (Posner, Robinson 1981)
Let A be a collection of degrees uniformly computable from 0′ and not
containing 0. There is a degree g so that for every degree a ∈ A we have that
a ∨ g = g′ = 0′.

1 The exact phrasing involves a cone avoidance component;
2 Slaman and Steel (1988) use a version to prove a special case of Martin’s

Conjecture;
3 Slaman and Shore (1999) use a version of this theorem to prove the

definability of the Turing jump;
4 Kihara, Gregoriades, Ng (2021) use a version of this theorem to prove

results related to the decomposability conjecture in descriptive set theory.
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The enumeration degrees

Enumeration reducibility arises from the need to extend our model of relative
computation to partial oracles. It was introduced independently several times
including by Uspensky 1955, Rogers 1957, Myhill 1961, Selman 1971.

Definition (Friedberg and Rogers 1959, Selman 1971)
A is enumeration reducible to (≤e) B if and only if there is a c.e. set Γ of
axioms ⟨x,D⟩, so that x ∈ A if and only if for some ⟨x,D⟩ ∈ Γ we have
D ⊆ B. We write A = Γ(B).

Equivalently, A ≤e B if and only if any Turing oracle that can enumerate B
can also enumerate A.

The induced structure De is the partial order of the enumeration degrees.

The Turing degrees DT embed into De as the total enumeration degrees by
ι(dT (A)) = de(A⊕A).
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The skip operator

Let {Γe} be an effective listing of all enumeration operators and set
KA = {e | e ∈ Γe(A)}. Note, that KA ≡e A.

Definition
The skip of A is the set A♢ = KA.

1 It is monotone: A ≤e B iff KA ≤1 KB iff KA ≤1 KB;
2 It is strict: KA ≰e A;
3 It agrees with the Turing jump: for all A we have that

(A⊕A)♢ ≡e A
′ ⊕A′.

Definition
The skip of de(A) is de(A)♢ = de(KA).

Proposition

If a = ι(x) is a total enumeration degree then a♢ = ι(x′).
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Skip properties

For most sets A we have that A ≰e A
♢.

Theorem (AGKLMSS 2021)

A ≤e A
♢ if and only if A has cototal degree.

Cooper (1984) defined the enumeration jump of a set A as KA ⊕KA.

Theorem (AGKLMSS 2021)

If a ≥ 0′e then there is some b so that b♢ = a.

The double skip is a set-monotone operator. A simple application of the
Knaster-Tarski fixed point theorem shows that:

Theorem (AGLMSS 2021)

There is a set A so that A♢♢ = A.

We call such sets skip 2-cycles. They are above every hyperarithmetical set.
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Kalimullin pairs

Kalimullin 2003 isolated a definable class of pairs of degrees, later called
K-pairs. He used them to prove that the enumeration jump is first order
definable in De.

Definition (Kalimullin 2003)
A pair of sets {A,B} is a K-pair if there is a c.e. set W so that:

A×B ⊆ W and A×B ⊆ W.

Theorem (Kalimullin 2003)
A pair of sets {A,B} is a K-pair if and only if the degrees de(A) = a and
de(B) = b satisfy

(∀x)[(a ∨ x) ∧ (b ∨ x) = x.]

If a and b form a K-pair then there can’t be any g so that a∨ g = b∨ g = g♢

because (a ∨ g) ∧ (b ∨ g) = g.
5 / 15



This is the only obstacle

Theorem (Gura(2019) following Jockusch and Shore(1984))
If A and B do not form a K-pair then there is a total function g so that
A⊕ g ≡e B ⊕ g ≡e g

′.

Proof.
Fix such A and B. We build g =

⋃
s σs wehere σ ∈ ω<ω:

At stage s we start by setting σ = σŝ x̂ y where x, y are the s-th
elements of A and B respectively.

Consider the c.e. set W = {⟨a, b⟩ | (∃τ)[τ ⪰ σ̂ ⟨a, b⟩ & s ∈ W τ
s ]}.

Fix ⟨a, b⟩ witnessing A×B ⊈ W or A×B ⊈ W .

If ⟨a, b⟩ ∈ W then let σs+1 be the least τ ⪰ σ̂ ⟨a, b⟩ with s ∈ W τ
s .

Otherwise set σs+1 = σ̂ ⟨a, b⟩.
If f is any enumeration of A or B then f and g together can recover the
construction and compute g′.
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K-tuples

Definition
A finite sequence of sets A1 . . . An is a K-tuple if and only if there is a c.e. set
W so that

A1 × · · · ×An ⊆ W and A× · · · ×An ⊆ W

Theorem
Let A be a countable sequence of enumeration degrees that does not contain
0e or any K-tuple. Then there is a total enumeration degree g so that for all
a ∈ A we have that a ∨ g = g′.
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The Slaman–Shore theorem

Fix n ≥ 1.

Theorem (Slaman, Shore 1999)

A is not ∆0
n if and only if there is a set G so that A⊕G ≡T G(n).

Proof flavor:
If A is not ∆0

n then the proof uses Kumabe-Slaman forcing to build G so that
A⊕G ≥T G(n).

An application of the iterated and relativized jump inversion theorem then
finds F ≥T G so that A⊕ F = F (n).

We want a similar method to use for the skip operator.

8 / 15



A forcing style proof

Theorem (Slaman, Soskova 2025)

If A is not c.e. then there is a set G so that A⊕G ≥e G
♢

Proof.
We build G so that G(A) = {x | (∃D)[⟨x,D⟩ ∈ G &D ⊆ A]} = G♢.

At stage s we have built a finite set of axioms Gs and a finite set Fs. We have
committed that if ⟨z,D⟩ is added to G then Fs ⊆ D. We want to determine
whether s ∈ G♢ i.e. whether s /∈ Γs(G).

Case 1: Suppose that there is an axiom ⟨s, E⟩ ∈ Γs so that every element in
E ∖Gs has the form ⟨z,D⟩ with Fs ⊆ D and D ⊈ A. Then let
Gs+1 = Gs ∪ E and Fs+1 = Fs.

Case 2: Otherwise, if ⟨s, E⟩ ∈ Γs and every element ⟨z,D⟩ in E ∖Gs has
Fs ⊆ D then there is at least one ⟨z,D⟩ ∈ E ∖Gs with D ⊆ A.
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A forcing style proof

Theorem (Slaman, Soskova)

If A is not c.e. then there is a set G so that A⊕G ≥e G
♢

Proof.
Case 2: Otherwise, if ⟨s, E⟩ ∈ Γs and every element ⟨z,D⟩ in E ∖Gs has
Fs ⊆ D then there is at least one ⟨z,D⟩ ∈ E ∖Gs with D ⊆ A.

Say that a is essential if for some ⟨s, E⟩ ∈ Γs as above we have that a appears
in each D.

The set of essential elements is c.e. and a subset of A.

Pick a ∈ A to be nonessential and add a to Fs+1. This guarantees that
s ∈ G♢, so set Gs+1 = Gs ∪ {⟨s, Fs+1⟩}.
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A surprise

Theorem (Slaman, Soskova)

If A is not c.e. then there is a set G so that A⊕G ≥e (G
♢)♢.

Proof.
A more careful analysis of the previous construction.

Note that G cannot be of total degree de(g) because if A ≤e 0
′
e then

A⊕ g ≤e g
′ <e g

′′!

But recall that there are G with G = (G♢)♢. So one (trivial) way to prove this
is to build G as a skip-2-cycle above A.

11 / 15



Skip inversion

Recall that one of the steps in the proof of the Slaman-Shore theorem was
relativized jump inversion. Does skip inversion relativize?

Theorem (AGKLMSS 2021)

For every x and every degree a ≥ x′ there is a degree y ≥ x with y♢ = a.

Theorem (Slaman, Soskova 2025)

However, there are degrees x and a ≥ x♢ so that no degree y ≥ x has
y♢ = a.
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Failure of relativized skip inversion

Theorem (Slaman, Soskova 2025)

There are degrees x and a ≥ x♢ so that no degree y ≥ x has y♢ = a.

Proof.
A ≤e Y

♢ implies that there is some B ≤e Y so that if x ∈ A then B[x] is
finite and if x /∈ A then B[x] = ω.

C =

{
ω, ∃n[|X ∩B[2n]| > n] ;
∅, otherwise.

C ≤e X ⊕B ≤e Y so C ≤e Y
♢. Let C = Γ(A).

Case 1: We add some finite D ∈ A so that Γ(A) ̸= ∅ implying C = ∅. We
leave some 2n > maxD out of A so that B[2n] = ω and so C = ω.

Case 2: Γ(A) must be empty. We put all even numbers in A forcing every
even column of B to be finite, say B[2n] bounded by bn. We then commit to
making X sparse enough to get a contradiction: x0 > b0, x1 > b1, . . .
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Final result

Theorem (Slaman, Soskova 2025)

If A is not c.e. then there is a set G so that A⊕G ≡e G
♢ ⊕ (G♢)♢.

Proof.
We build G = G1 ⊕G2 ⊕G3 so that

1 G1(A) = G♢;
2 G2(A) = (G♢)♢;
3 G3(∅♢) = A.

We adapt the notion of nonessential element using the fact that (A,A, ∅♢)
cannot be a K-tuple.

Question
How do we iterate this construction for higher n?
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Thank you

Gian-Carlo Rota
According to ...[the “one-shot”] ... view, mathematics would consist of a
succession of targets, called problems, which mathematicians would be
engaged in shooting down by well-aimed shots. But where do problems come
from, and what are they for? If the problems of mathematics were not
instrumental in revealing a broader truth, then they would be indistinguishable
from chess problems or crossword puzzles. Mathematical problems are
worked on because they are pieces of a larger puzzle.

Ivan Soskov
The good puzzles are the ones that will never be completely solved.
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