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Computable topology

I Computable topology began in the 50’s with the work of
Lacombe and Markov.

I One of the modern approaches to computable topology is
based on Kreitz and Weihrauch’s theory of representations.

I It was used to study computability on a wide range of families
of topological spaces.
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Some families of topological spaces

qcb spaces
Schröder, 2002

Second-countable
Kreitz-Weihrauch, 1984

Quasi-Polish spaces
de Brecht, 2011

Polish spaces
Moschovakis, 1980



Computable definitions associated

Each classical notion should come with its associated “effective
version”.



Computable Polish spaces

Computable Polish spaces were introduced by Moschovakis in
1980.



Quasi-Polish spaces

Classical Quasi-Polish spaces were introduced by de Brecht in 2011.

Pre-computable quasi-Polish spaces and computable
quasi-Polish spaces are defined in:
I de Brecht, Pauly and Schröder: Overt choice, Computability

2020.

Building on (and answering problems from):
I Selivanov: Towards the Effective Descriptive Set Theory, CiE

2015.
I Korovina and Kudinov: On Higher Effective Descriptive Set

Theory, CiE 2017.
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The qcb0 spaces are the spaces that admit admissible
representations.

Computable qcb0 spaces are obtained thanks to the notion of
computably admissible representation.
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Second countable spaces

There is a conspicuous absence of the terms “computably second
countable” in some parts of the literature, in works from 2000’s
until 2014.

What is often called “computable topological space” hides a
computable second countability hypothesis.
In the more recent literature the term effectively
countably-based T0-space or weakly computable cb0-space
are more common.
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Example taken from Computable metrization, Grubba,
Schröder, Weihrauch, MLQ 2007



Effective second countability

I There seemed to be a lack of a systematical study of the
effective versions of the statement

“X has a countable basis (Bi )i∈N”

that we have tried to address.
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Represented spaces, realizer

Definition
A representation of a set X is a partial surjection ρ :⊆ NN → X .

If ρ(p) = x , then p is called a ρ-name of x .

A realizer for a multi-function f : (X , ρ)⇒ (Y , τ) between
represented spaces is a partial map F :⊆ NN → NN such that

∀p ∈ dom(ρ), τ(F (p)) ∈ f (ρ(p)).

In words: it maps any name of a point of X to a name of one of its
images.

A multi-function is computable if it has a computable realizer,
and continuously realizable if it has a continuous realizer.
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Continuous and computable translation

Definition
If ρ and τ are representations of X , we put ρ ≤ τ , and say that ρ
translates to τ , if the identity id : (X , ρ)→ (X , τ) is computable.

We say that ρ continuously translates to τ , and write ρ ≤t τ , if
the identity id : (X , ρ)→ (X , τ) is continuously realizable.

The relations ≤ and ≤t induce equivalence relations.
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Admissibility

Definition (Weihrauch-Kreitz, 1985)
A representation δ of a topological space X is admissible if it is
continuous δ :⊆ NN → X and if for any continuous representation
τ :⊆ NN → X we have τ ≤t δ.

Theorem (Weihrauch-Kreitz, 1985)
A representation δ of a topological space Y is admissible if and
only if for every represented space (X , ρ) equipped with the final
topology of its representation and every function f : X → Y , we
have the equivalence:
I f is continuous,
I f is continuously realizable.
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Admissible representation theorem for second countable
spaces

Let X be a second-countable T0 space with basis (Bi )i∈N.

Definition (Weihrauch-Kreitz, 1985)
The standard representation of X associated to (Bi )i∈N is given
by

ρ((un)n∈N) = x ⇐⇒ {un | n ∈ N} = {k ∈ N | x ∈ Bk}.

Theorem (Weihrauch-Kreitz, 1985)
1. All standard representations are admissible.
2. All standard representations of a second countable space are

continuously equivalent.
3. All admissible representations of a second countable space are

continuously equivalent to a standard representation.
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What about computability?



Schröder’s PhD, 2002

Presents a general approach to computable topology based on the
representation of the Sierpiński space.

Similar ideas are due to Paul Taylor and Martin Escardo.

The Sierpiński space S is {0, 1} with {1} open and {0} not open.

Representation of S
The usual representation cS : NN → S of S is given by

cS(0ω) = 0,

cS(u) = 1 for u 6= 0ω.
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We get a representation

The representation cS is admissible, and thus for any represented
space X equipped with the final topology of its representation,
every continuous map f : X → S has a continuous realizer.

The Type 2 Universal Turing Machine Theorem provides a
representation Φ of all continuously realizable functions between
any two represented spaces.

I From any represented space (X , ρ) we can build a new
represented space (O(X ), δO(X)).

Example
O(N) = P(N), the set of subsets of N equipped with the Scott
topology. Subsets of N are described by enumerations.
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Admissibility theorem

Theorem (Schröder, 2002)
A representation is admissible if and only if

X ↪→ OO(X )
x 7→ {O | x ∈ O}

has a continuously realizable inverse.

Definition (Schröder, 2002)
A representation is computably admissible if

X ↪→ OO(X )
x 7→ {O | x ∈ O}

has a computable inverse.
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Computably admissible representation

Theorem (Schröder, 2002)
A representation ρ of a set Y is computably admissible iff for every
represented space X and every function f : X → Y , we have

f is computable ⇐⇒ f −1 : O(Y )→ O(X ) is computable.



Computably admissible representation as Computably
Kolmogorov spaces

New name advanced by Vasco Brattka:

Instead of saying that ρ is a computably admissible representation
of X , we say that (X , ρ) is a computably Kolmogorov space, or
a CT0 represented space.
I A topological space is T0 when points are uniquely determined

by the open sets to which they belong.
I A represented space is CT0 when the name of a point can be

computed from a name of the set of open sets to which it
belongs.
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Coming back to the Weihrauch-Kreitz Theorem

Theorem (Weihrauch-Kreitz, 1985)
1. All standard representations are admissible.
2. All standard representations of a second countable space are

continuously equivalent.
3. All admissible representations of a second countable space are

continuously equivalent to a standard representation.
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A computable Weihrauch-Kreitz Theorem?

Fact
1. All standard representations are computably admissible.

2. The standard representations of a second countable space are
not all computably equivalent.

3. A computably admissible representation of a second countable
space does not have to be computably equivalent to a
standard representation.
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Computable second countability

Definition
We say that (X , ρ) is computably second countable when ρ is
computably equivalent to a standard representation.



Goal of today’s talk

I The fact that the notion of computably second countable
space is very robust does not really need justification.

I But we still gather useful equivalent definitions.
I Describe a whole range of weak forms of effective second

countability.
I Emphasize the fact that Schröder’s work, whose main goal is

often understood as extending the work of Weihrauch to non
second-countable spaces, is also useful for second-countable
spaces.
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Different forms of effective second countability

Classical countable basis

Topology generated by c.e. open sets

Semi-effective basis (Bi )i∈N

Nogina basis (Bi )i∈N

Lacombe basis (Bi )i∈N Nogina basis (Bi )i∈N and CT0

Computably second countable

??



Computably second countable spaces

X equipped with a standard representation

Lacombe basis (Bi )i∈N and CT0

X computably embeds in O(N)

Computably open representation and CT0
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Bases of c.e. open sets.

The c.e. open sets of a represented space (X , ρ) are the
computable points of O(X ).

They are the semi-decidable sets.

The weakest form of effective second countability asks that the c.e.
open sets form, classically, a basis of the topology of X .
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Semi-effective basis

Definition
A semi-effective basis for (X , ρ) is a computable map

B : N→ O(X )

whose image forms a basis.

Thus the elements are constructively open, they can be
enumerated, but they form a basis only classically.
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Nogina Basis

Definition
A Nogina basis for (X , ρ) is a semi-effective basis (Bi )i∈N for
which the map

X ×O(X )⇒ N
(x ,U) 7→ {i , x ∈ Bi ⊆ U}

is computable.

References
Elena Yu. Nogina. Effectively topological spaces. Doklady
Akademii Nauk SSSR, 1966.
Gregoriades, Kispéter and Pauly. A comparison of concepts from
computable analysis and effective descriptive set theory.
Mathematical Structures in Computer Science, 2016.
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Lacombe basis

If (Bi )i∈N is a semi-effective basis of X , then the following map is
computable and onto:

O(N)→ O(X )
A 7→

⋃
i∈A

Bi .

Definition
A Lacombe basis for (X , ρ) is a semi-effective basis (Bi )i∈N for
which the above map has a computable multivalued inverse.

In words: the open set can uniformly be written as countable
unions of basic sets.

References
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Computably open representation

Definition
A representation ρ :⊆ NN → X is computably open if the map

ρ̂ : O(NN)→ O(X )
U 7→ ρ(U)

is well defined and computable.

Another name for this notion is computably fiber-overt
representation.



Computably open representation

Definition
A representation ρ :⊆ NN → X is computably open if the map

ρ̂ : O(NN)→ O(X )
U 7→ ρ(U)

is well defined and computable.

Another name for this notion is computably fiber-overt
representation.



Embedding into O(N)

Definition
A computable embedding between represented spaces (X , ρ) and
(Y , δ) is a computable injection f : X ↪→ Y with a computable
inverse g : Im(f ) ↪→ X .



Main theorem

Theorem (Brattka, R.)
All implications between the notions are shown on the following
figure. (There is one conjecture.)



All the implications

Classical countable basis

Topology generated by c.e. open sets

Semi-effective basis (Bi )i∈N

Nogina basis (Bi )i∈N

Lacombe basis (Bi )i∈N Nogina basis (Bi )i∈N and CT0

X equipped with a standard representation

X computably embeds in O(N) Lacombe basis (Bi )i∈N and CT0 Computably open representation + CT0

??



Most relevant implication

Theorem
If X is equipped with the standard representation associated to
(Bi )i∈N, then (Bi )i∈N is a Lacombe basis.



Type 2 Moschovakis Theorem

This implication is a Type 2 version of a theorem from :
Moschovakis, Recursive metric spaces, Fundamenta Mathematicae
1964

Generalizations due to Dieter Spreen (1998).
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Intrinsic embedding

Corollary
If X is computably second countable and Y ⊆ X, then Y equipped
with the restriction of the representation of X is computably
second countable as well, and the map

O(X )→ O(Y )
U 7→ U ∩ Y

is onto and has a computable multivalued inverse.

In the vocabulary of Bauer, any Y ⊆ X is an intrinsic subset of X
(Spreen spaces and the synthetic
Kreisel-Lacombe-Shoenfield-Tseitin theorem. JLA, 2025.)
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Computably sequential embedding

We call it a computably sequential embedding.

Indeed, for Y ⊆ X , the map

O(X )→ O(Y )
U 7→ U ∩ Y

is onto exactly when the subset topology {U ∩ Y | U ∈ O(X )} is
sequential (Schröder).
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New version

The above corollary is seen as an effective version of “a
second-countable space is hereditarily sequential”.

Corollary
All subsets of a computably second countable space are
computably sequential.



New version

The above corollary is seen as an effective version of “a
second-countable space is hereditarily sequential”.

Corollary
All subsets of a computably second countable space are
computably sequential.



A non intrinsic embedding

Example (Friedberg 1958, Bauer 2025)
Consider the map

NN → O(N)
(un)n∈N 7→ {〈n, un〉 | n ∈ N}.

In Type 1 computability (Markovian constructivism), it is not an
intrinsic embedding.



Weihrauch-Grubba approach

Unifying result
We also clarify the relationship between different approaches to
computable topology.

In particular, we can understand the relationship with the
Weihrauch-Grubba approach based on a notion of computable
presentation.
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Weihrauch-Grubba and Schröder approaches

Definition
A computable topological space is a pair (X , (Bi )i∈N), where X is
a set and (Bi )i∈N is the basis of a T0 topology on X for which
there exists a computable function f : N2 → N such that for any i ,
j in N:

Bi ∩ Bj =
⋃

k∈Wf (i,j)

Bk .

Define a representation θ+ :⊆ NN → O(X ) of the open sets of X
by:

θ+(f ) =
⋃

{n,∃p∈N, f (p)=n+1}
Bn.

Consider also the standard representation associated to (Bi )i∈N.
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Figure: Weihrauch-Grubba approach
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Figure: Sierpiński representation approach
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Non computably second countable copy of S

Replace the standard representation of the Sierpiński space

cS : NN → S
u 7→ 0 if u = 0ω

7→ 1 if u 6= 0ω

by

fS : NN → S
u 7→ 0 if ∀n ∈ N, un ∈ K
7→ 1 if ∃n ∈ N, un /∈ K .

Then the point {1} is open but not c.e. open.

Hoyrup and Rojas, On the information carried by programs about
the objects they compute, Theory of Computing Systems, 2016



Non computably second countable copy of S

Replace the standard representation of the Sierpiński space

cS : NN → S
u 7→ 0 if u = 0ω

7→ 1 if u 6= 0ω

by

fS : NN → S
u 7→ 0 if ∀n ∈ N, un ∈ K
7→ 1 if ∃n ∈ N, un /∈ K .

Then the point {1} is open but not c.e. open.

Hoyrup and Rojas, On the information carried by programs about
the objects they compute, Theory of Computing Systems, 2016



Non computably second countable copy of S

Replace the standard representation of the Sierpiński space

cS : NN → S
u 7→ 0 if u = 0ω

7→ 1 if u 6= 0ω

by

fS : NN → S
u 7→ 0 if ∀n ∈ N, un ∈ K
7→ 1 if ∃n ∈ N, un /∈ K .

Then the point {1} is open but not c.e. open.

Hoyrup and Rojas, On the information carried by programs about
the objects they compute, Theory of Computing Systems, 2016



Where are we?

Classical countable basis (S, fS)

Topology generated by c.e. open sets

Semi-effective basis (Bi )i∈N

Nogina basis (Bi )i∈N

Lacombe basis (Bi )i∈N Nogina basis (Bi )i∈N and CT0

Computably second countable (S, cS)

here

??

there



A second example

Start with a classical example of a sequential but not hereditarily
sequential topological space.

Take
X = N2 ∪ {∞} × N,

with topology discrete on N2, discrete on {∞} × N, and
(n, p) →

n→∞
(∞, p).
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Illustration of the example

N2 {∞} × N

· · ·

· · ·

· · ·

(∞, 0)

(∞, 1)

(∞, 2)

(∞, 3)

(∞, 4)

(∞, 5)

(∞, 6)

(∞, 7)



Add (∞,∞)

I Add a new point (∞,∞), with neighborhood basis defined as
the set of sets of the form

Bf ,k = {(n,m) ∈ (N∪{∞})×N | n > f (m),m > k}∪{(∞,∞)},

for f ∈ NN, k ∈ N.

Let X be the obtained space.
The closure of N2 in X is all of X .
The sequential closure of N2 is X \ (∞,∞): for a sequence in N2

to converge to (∞,∞), the first component should grow faster
than all functions.
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Example

This example was studied by Schröder as an example of a
non-hereditarily sequential space that still has an admissible
representation.

We consider an effective version of the above: we replace the basis

{Bf ,k , f ∈ NN, k ∈ N}

by
{Bf ,k , f ∈ Tot, k ∈ N}.

The topological space Y thus obtained is now second countable,
and thus hereditarily sequential.
However, a computable sequence of elements of N2 cannot
converge to (∞,∞).
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representation.
We consider an effective version of the above: we replace the basis

{Bf ,k , f ∈ NN, k ∈ N}
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Conclusion

We thus obtain a represented space in which the c.e. open sets do
generate the topology, but in which no computable sequence of
c.e. open sets can be a basis: the image of a computable map

N→ O(Y )

is never a basis.



Where are we?

Classical countable basis

Topology generated by c.e. open sets Y

Semi-effective basis (Bi )i∈N

Nogina basis (Bi )i∈N

Lacombe basis (Bi )i∈N Nogina basis (Bi )i∈N and CT0

Computably second countable

here

??
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Setting

If a topological space X is second countable and A, then B. (1)

Which form of effective second countability is necessary to get an
effective version of this statement?
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Urysohn Metrization

Theorem (Urysohn 1925, Tychonoff 1926)
The following are equivalent for a second countable space X:
1. X (topologically) embeds into the Hilbert cube [0, 1]N,
2. X is regular and T0,
3. X is metrizable.



Computable regularity

Regularity
A topological space X is regular if for every point x and closed A
with x /∈ A, there are U1 and U2 disjoint open with x ∈ U1 and
F ⊆ U2.

Computable regularity
A represented space X is computably regular if the following
multi-function is well defined and computable:

R :⊆ X ×A−(X )⇒ O(X )2

(x ,A) 7→ {(U,V ), x ∈ U &A ⊆ V &U ∩ V = ∅}.
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Strong computable regularity

Strong computable regularity (Schröder, 1998)
A represented space X is strongly computably regular if the
following multi-function is well defined and computable:

P : O(X )⇒ O(X )N ×A−(X )N

O 7→ {(Un,Vn)n∈N, ∀n ∈ N, Un ⊆ Vn ⊆ O, O =
⋃

n∈N
Un}.

This includes a version of the Lindelöf property, it could maybe be
called “computably regular-Lindelöf”.
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Schröder-Urysohn Effective Metrization

Theorem
The following are equivalent for a represented space (X , ρ):
1. (X , ρ) computably embeds into the Hilbert cube [0, 1]N,
2. (X , ρ) is computably second countable and strongly

computably regular.

The above imply, without being equivalent to:
3. (X , ρ) has a computable metric that generates the topology of

X.

Construction due to Schröder, 1998.
See also Amir and Hoyrup, Strong computable type, Computability
2023.

Computable second countability is necessary.
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Second example

Fact
A second countable space is separable.

Proof.
Consider a countable basis (Bi ). The set {Bi | Bi 6= ∅} is also
countable. Then apply choice.
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Computable separability

A represented space X is computably separable if there exists a
dense and computable sequence, i.e. a computable map

f : N→ X

with dense image.



Naive version

Open choice:

OC : O(X ) \ {∅}⇒ X
O 7→ O.

Effective Fact (?)
Let (X , ρ) be a represented space which admits a semi-effective
basis of non-empty sets and that has a computable open choice
problem. Then (X , ρ) is effectively separable.

True, but useless.
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Open choice

Theorem (Brattka, R.)
A represented space (X , ρ) has computable Open Choice if and
only if it is computably separable.



Saving our fact

Non-total Open Choice:

OC∗ : O(X ) \ {∅,X}⇒ X
O 7→ O.



The fact is saved!

Effective Fact (!)
Let (X , ρ) be a represented space which admits a semi-effective
basis of non-empty and non-total sets, and that has computable
Non-total Open Choice problem.
Then (X , ρ) is effectively separable.

Having a computable Non-total Open Choice problem is not
equivalent to being computably separable.
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Thank you for your attention

Is the Bordelais computably separable?
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