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Polynomial-time computation

Polynomial Hierarchy

Decision problems:

Σp
0 := P

Σp
1 := NP

Σp
i+1 := NPΣb

i

Functional classes:
□p

i+1 := FPΣb
i
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Polynomial-time computation

Cobham

Definition

f is said to be definable using bounded recursion on notation (BRN) from
h, g0, g1 with the bound k if

f(0, y) = g(y)

f(s0(x), y) = g0(x, y, f(x, y))

f(s1(x), y) = g1(x, y, f(x, y))

f(x, y) < k(x, y)

where s0(x) = 2x and s1(x) = 2x+ 1.

Fact

FP = [ 0, s0, s1,#, comp,BRN ]
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Polynomial-time computation

Functional algebra of polynomial hierarchy

Definition

f is defined by bounded minimization (BMIN) from g if

f(x, y) = µi < x[g(i, y) = 0]

□p
i :

[ 0, S,+,×,#, comp,BRN,BMIN : rk(BMIN) < i ]

PH:
[ 0, S,+,×,#, comp,BRN,BMIN ]
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Polynomial-time computation

Language of bounded arithmetic

Language:
0, S,+,×,#

Bounded arithmetical hierarchy:

Σb
0 = Πb

0 = ∆b
0: Boolean combination of atomic formulas:

Σb
i+1 := ∃x ≤ tΠb

0

Πb
i+1 := ∃x ≤ tΣb

0

∃x ≤ |t| and ∀x ≤ |t| do not change the logical complexity
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Polynomial-time computation

Bounded arithmetic I

Definition (Si
2)

BASIC;

Σb
i -PIND:

Γ, ϕ(⌊x2 ⌋) ⊢ ∆, ϕ(x)

Γ, ϕ(0) ⊢ ∆, ϕ(t)

Lemma

f ∈ □p
i ⇔ Si

2 ⊢ “f is total”
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Discrete ordinary differential equations
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Discrete ordinary differential equations

Discrete linear ODE I

Definition (Discrete ODE)

f(0, y) = g(y)

∂ f(x, y)

∂ l(x)
= f(2x, y)− f(x, y)
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Discrete ordinary differential equations

Discrete linear ODE II

Definition (L-ODE)

∂f

∂l
(x, y) = α(x, y)× f(x, y) + β(x, y)

Lemma

FP = [ BASIC, comp, sign, L-ODE ]
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Discrete ordinary differential equations

Discrete linear ODE III

FP ⊇ [ BASIC,COMP, sign, L-ODE ]:

Let p be the polynomial bounding the computation time of α;

Compute f̂ :

x 7→ ⟨f(0), f(⌊ x

2|x|
⌋), f(⌊ x

2|x|−1
⌋), . . . , f(⌊x

2
⌋), f(x)⟩

Its computational time is bounded by q s.t.

q(x) + p(x) ≤ q(2x)

So f ∈ FP.
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Discrete ordinary differential equations

Discrete linear ODE IV

FP ⊆ [ BASIC,COMP, sign, L-ODE ]:

Represent every FP function on a model of computation (RAM);

Represent the transition of machine states using ODE:

∂f

∂l
(t, x) =

∑
l

nextl × s̄g(f(t, x)− l)× (
∏
i

(sg(f(t, x)− i)))
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Discrete ordinary differential equations

Proof: FP ⊆ L-ODE I

Let qi(x) be the state of Mf (x) at i-th step. Define

f0(x, t) := ⟨q0(x), . . . , q|t|(x)⟩

Let p be polynomial bounding the computation time of Mf (x), then the
following operation is polynomial:

f(x) 7→ f0(x, 10
p(|x|))

Define f0 using L-ODE:

⟨q0(x), . . . , q|t|(x), q|t|+1(x)⟩ = α(x, t)× ⟨q0(x), . . . , q|t|(x)⟩+ β(x, t)
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Discrete ordinary differential equations

Proof: FP ⊆ L-ODE II

How to define α and β:

Let last configuration of f0(x, t) be

q|t|(x) = ⟨s, w, i⟩(x, |t|)

Assume the last configuration of f0(x, 2t) can be defined by the following
cases:

⟨s, w, i⟩(x, |t|+ 1) =

{
qa if s(x, |t|) = sa

qb if s(x, |t|) = sb

Then it can be represented by the following L-ODE:

⟨q0(x), . . . , q|t|(x), q|t|+1(x)⟩
= [(s(x, |t|) =? sa]× (⟨q0(x), . . . , q|t|(x)⟩ × 10|qa| + qa)

+ [(s(x, |t|) =? sb]× (⟨q0(x), . . . , q|t|(x)⟩ × 10|qb| + qb)
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Discrete ordinary differential equations

A more concise proof: FP ⊆ L-ODE I

Define

f̂(x, y) :=

{
the first p(|y|)-many bits of f(x) if |y| ≤ |f(x)|
f(x) otherwise

f̂(x, 2y) concatenates the p(|y|) + 1, . . . , p(|y|+1)-th bits of f(x) to f̂(x, y):

f̂(x, 2y) = f̂(x, y)@⟨bp(|y|)+1, . . . , bp(|y|+1)⟩

We obtain α and β:

α(x, y) = 10p(|y|+1)−p(|y|)

β(x, y) = ⟨bp(|y|)+1(x), . . . , bp(|y|+1)(x)⟩
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Discrete ordinary differential equations

A more concise proof: FP ⊆ L-ODE II

Are α and β always in FP?

α(x, y) := the number of additional bits

y 7→


p(|y|+ 1)− p(|y|) if p(|y|+ 1) ≤ |f(x)|
|f(x)| − p(|y|) if p(|y|) ≤ |f(x)| < p(|y|+ 1)

0 otherwise

β(x, y) := the operation of computing the i-th of the additional bits

(x, i) 7→ bi(x)
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Discrete ordinary differential equations

Another ODE I

Definition (t-ODE)

f(t(x), y) = α(x, y)× f(x, y) + β(x, y)

where t can be a (multi)-function satisfying:

t(x) ≥ 2x;

t is left-invertible: t−1 ◦ t = id;

t, t−1 ∈ FP.
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Discrete ordinary differential equations

Another ODE II

Lemma

Fix a multi-function t in FP. Then every function f in FPNP can be represented
using t-ODE with

f(t(x), y) =max α(x, y)× f(x, y) + β(x, y)

where α, β ∈ FPNP.
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Bounded arithmetic and witnessing functions

Bounded arithmetic I

Lemma

Let f be expressed as a Σb
i -formula ϕf .

Then, f is in □p
i iff Si

2 ⊢ ∀x∃y ϕf (x, y).

Difficult direction: if f is provably total in S1
2 , then f ∈ FP.

Easy direction: if f ∈ FP, then f is provably total in S1
2 .
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Bounded arithmetic and witnessing functions

Bounded arithmetic II

The following are ∆b
1 predicates:

Seq(w) : w is a sequence;
l(w) = x : the length of w is x;
w(i) = x : x is the i-th element of w is x if i ≤ l(w), otherwise x = 0;

Then, we can express that w is computation of the TM Mf on input x:

Compf (w, x)

The totality of f can then be expressed as:

∀x ∃w Compf (w, x)

It can be proved by Σb
1-PIND because w is bounded:

w ≤ max(w)#l(w)
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Polynomial Hierarchy and ODE

ODE characterization of FPNP I

Definition (h-ODE)

Fix a multi-function h. Then, f is defined from α and β via h-ODE:

f(h(x), y) =max α(x, y)× f(x, y) + β(x, y)

Lemma

Every function in FPNP can be represented by FP-ODE.
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Polynomial Hierarchy and ODE

ODE characterization of □p
i I

Lemma

□p
i+1 = [ □p

i , comp,□p
i -ODE ]

Define the theory
S1
2(f̄) := S1

2 + “f is total”

where every f is a function definable by □p
i -ODE using with g1, g2 ∈ □p

i :

f(h(x)) = g1(x)× f(x) + g2(x)

Show that S1
2(f̄) is a conservative extension of Si+1

2 .
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Polynomial Hierarchy and ODE

ODE characterization of □p
i II

Suppose S1
2(f̄) proves

Γ ⊢ ∆

Let f be the function satisfying

Witi+1∧
Γ(w, x) → Witi+1∨

∆(f(w, x), x)

Let h be provably total in □p
i and α, β be provably total in □p

i+1. Then, f
can be defined as

f(h(x)) = α(x)× f(x) + β(x)
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From induction scheme to ODE

Objectives

ODE ←→ Bounded theories

∂f

∂|h|
(x) = F (x, f(x)) ←→ Σb

j ⊢ ∀Σb
i

Rui Li CCR2025 June 20, 2025 28 / 32



From induction scheme to ODE

ODE ← Bounded theories I

j < i:

Si−1
2 ⊢ ∀Σb

i ⇒ □p
i [wit, O(log)];

Si−2
2 ⊢ ∀Σb

i ⇒ □p
i [wit, O(1)].
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From induction scheme to ODE

ODE ← Bounded theories II

j > i:

Si+1
2 ⊢ ∀Σb

i ⇒ the projection of PLSΣ
p
i functions:

E.g., suppose ϕ is Σb
1 and S2

2 -provably total, then there exists PLS problem
(F,N,C) s.t.

S2
2 ⊢ ∀x∀y (∀z N(x, z) ∧ F (x, z)→ C(x, z) ≤ C(y, z))→Witϕ(x, y)

The Sj
2 ⊢ ∀Σb

i where j > i+ 1 is more complicated...
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From induction scheme to ODE

ODE → Bounded theories

?
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From induction scheme to ODE
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