
Meta-Complexity: Intro
and a Brief Survey

Rahul Santhanam
(University of Oxford)

Plan of the Talk

• Introduction
• Vignette 1: Learning
• Vignette 2: Cryptography
• Vignette 3: Complexity Lower Bounds
• Further Directions

Plan of the Talk

• Introduction
• Vignette 1: Learning
• Vignette 2: Cryptography
• Vignette 3: Complexity Lower Bounds
• Further Directions

Meta-Complexity

• Meta-complexity is the study of computational problems that are
themselves about complexity, eg., the Minimum Circuit Size Problem
(MCSP) or the problem of computing Kolmogorov complexity
• Meta-complexity as a topic: Which complexity classes do various

meta-complexity problems lie in? What complexity lower bounds can
we show for them? What reductions exist between them?
• Meta-complexity as a tool: Use meta-complexity to attack

fundamental questions in computational complexity, learning theory,
cryptography and proof complexity

MCSP (Minimum Circuit Size Problem)

• MCSP: Given the truth table of a Boolean function F, and a parameter
s, does F have Boolean circuits of size s?
• MCSP[s]: Given the truth table of a Boolean function F on log(N)

variables, does F have Boolean circuits of size s(N)?

MCSP and Complexity Lower Bounds

• Showing that DTIME(2O(n)) does not have Boolean circuits of size s(n) is
equivalent to efficiently constructing NO instances of MCSP[s(log(N))]
of size N given input 1N
• In one direction, efficiently constructing NO instances gives a way of

generating the truth table of a Boolean function without circuits of size s(n) in
time 2O(n) = poly(N) (where N = 2n)
• In the other direction, if L in DTIME(2O(n)) does not have Boolean circuits of size

s(n), then we can efficiently generate the truth table of Ln in time 2O(n) =
poly(N), and this truth table is a NO instance of MCSP[s(log(N))]

The Complexity of MCSP

• MCSP is in NP
• Given the truth table y (of size N) of a Boolean function F, and a parameter s, we

guess a circuit C for F of size s, and check that y is the truth table of the function
computed by C, by running C on each input z of size log(N) and verifying that
C(z) is consistent with y

• Question: Is MCSP in P?
• Naïve algorithm incurs an exponential cost by running over all candidate circuits
• No if one-way functions exist [GGM86, RR97, KC00]

• Question: Is MCSP NP-complete?
• Recently Hirahara [H22] showed that a version called Partial-MCSP, where the

input truth table has some “don’t care” symbols, is NP-complete

Meta-Complexity Problems Based on Other
Complexity Measures

• Circuit size can be thought of as a complexity measure on strings, and
MCSP is the computational problem corresponding to this measure
• Similarly, we can consider other complexity measures and the

computational problems corresponding to them
• K: Kolmogorov complexity
• KS: Space-bounded Kolmogorov complexity
• Kpoly: Poly-time bounded Kolmogorov complexity

Kolmogorov Complexity

• Let U be a fixed universal Turing machine
• For any string x in Σ*, K(x) is min {|p|: U(p, ε) = x}
• Given y in Σ*, K(x|y) is min {|p|: U(p,y) = x}

• Basic properties
• For every x in Σ*, K(x) ≤ |x| + O(1)
• For each integer n, there is x of length n such that K(x) ≥ n

Meta-Complexity of K

• MKP: Input is a string x together with a parameter s, question is
whether K(x) ≤ s
• K: Given a string x, compute the K complexity of x
• MKP and K are uncomputable
• Note that the problems reduce to each other in polynomial time, hence it is

sufficient to consider one of them when analyzing complexity

Uncomputability of Kolmogorov Complexity

• Suppose, for the sake of contradiction, that there is a TM M that computes K
• Define a TM N that accepts x iff K(x) ≥ n

• By Basic Property (2) of K complexity, N accepts at least one string for each input
length n

• Now define a sequence of strings {xn}, |xn|=n, as follows
• For each n, xn is the lexicographically first string of length n that N accepts

• Note that we can compute xn given n by simulating N on strings of length n in lex
order and outputting the first such string it accepts

• This implies that K(xn) ≤ log(n) + O(1)

• But, by definition of xn, K(xn) ≥ n for each n, which is a contradiction for large enough
n

The Deep Intractability of Kolmogorov
Complexity

• Theorem [C74]: Let X be any effectively axiomatizable sound proof
system. There are only finitely many m for which a statement of the
form “K(x) ≥ m” that can be proved in X!
• Proof: Suppose, for the sake of contradiction, that there are infinitely

many m for which some statement “K(x) ≥ m” is provable in X. Given
m, we can computably find an x such that “K(x) ≥ m” is provable in X
by enumerating potential proofs of such statements in parallel until
we find an actual one. But this x has K(x) ≤ log(m) + O(1), and for large
enough m, this contradicts K(x) ≥ m (which is implied by the
soundness of X)

Kpoly

• Let U be a fixed time-efficient universal Turing machine, and let t be a
fixed polynomial
• Kt(x) = min{|p|: U(p, ε) = x in at most t(|x|) steps}
• We have that for each x, Kt(x) ≤ |x| + O(1), and for each n, there is a

string x of length n such that Kt(x) ≥ n
• Note that K(x) ≤ Kt(x) for each x

Meta-Complexity of Kpoly

• Let t be a fixed polynomial
• MKtP: Input is a string x together with a parameter s, question is whether Kt(x) ≤

s
• Kt: Given a string x, compute the Kt complexity of x

• MINKT: Input is a string x together with parameters s and t in unary,
question is whether Kt(x) ≤ s
• MKtP and MINKT are in NP, and Kt can be computed in poly time with an

NP oracle
• Open whether any of these problems are NP-hard, however all of them

are hard if one-way functions exist [RR97, KC00], and SZK reduces to
them all [AD17]

KS

• Let U be a fixed space-efficient universal Turing machine
• KS(x) = min{|p| + s: U(p, ε) = x using space at most s}
• We have that for each x, KS(x) ≤ |x| + log(|x|), and for each n, there is

a string x of length n such that KS(x) ≥ n
• Note that K(x) ≤ KS(x) for each x

Meta-Complexity of KS

• MKSP: Input is a string x together with a parameter s, question is
whether KS(x) ≤ s
• KS: Given a string x, compute the KS complexity of x
• Observation: MKSP and KS are in polynomial space (by doing a brute-

force search for the optimal program computing x)
• Theorem [ABKvMR06]: MKSP and KS are complete for PSPACE under

non-uniform poly-size non-adaptive reductions and probabilistic poly-
time Turing reductions
• Note that this hardness is insufficient to establish that MKSP not in LOGSPACE,

and indeed this is still an open question

Plan of the Talk

• Introduction
• Vignette 1: Learning
• Vignette 2: Cryptography
• Vignette 3: Complexity Lower Bounds
• Further Directions

Search to Decision Reductions

• Let L be a problem in NP
• The decision problem for L is to decide, given x, whether x in L
• The search problem for L is to find, given x in L, a proof or witness that

x in L
• Classical result: SAT is decidable in polynomial time iff the search

problem for SAT is solvable in polynomial time
• Proof idea: Iteratively determine the witness bit by bit, using one oracle call to

the decision problem for each bit of the witness

Search to Decision for MCSP?

• The idea of the search-to-decision reduction for SAT doesn’t seem to
work for MCSP
• Unclear how to find a circuit for a given truth table bit by bit just by asking

questions about MCSP

• Until recently, nothing was known about whether search reduces to
decision for MCSP
• The search version of MCSP is closely related to learning

Learning and MCSP

• Learning model: The learner is given oracle access to a target Boolean
function F and outputs a “good” hypothesis (i.e., small circuit) C
approximating the target function if there is a good hypothesis
consistent with F
• Search version of MCSP: Given a truth table of a Boolean function F,

output a small circuit C for the truth table if one exists
• Intuitively, if there is an efficient learner, one can solve

(approximately) the search version of MCSP, simply using the input
truth table to answer oracle queries

Learning from Solving MCSP Efficiently

• Theorem [CIKK16]: Let C be a “reasonable” circuit class. If C-
MCSP[2n^ε] can be solved in time poly(N) (on average over the uniform
distribution), then C-circuits of poly(n) size can be learned in time
2polylog(n)
• Corollary [CIKK16]: The class AC0[Parity] of constant-depth unbounded

fan-in circuits with Parity gates can be learned in quasi-polynomial
time
• Average-case algorithms for AC0[Parity]-MCSP had been known since [RR97],

based on lower bound techniques against AC0[Parity]

Speedup for Learning

• Theorem [OS17]: Let C be a “reasonable” circuit class. There is ε > 0
such that C-circuits of 2n^ε size can be learned in time 2O(n) if and only if
C-circuits of poly(n) size can be learned in time 2polylog(n)
• The statement of this result doesn’t directly involve MCSP or meta-

complexity, but the proof crucially uses the main result of [CIKK16]

Plan of the Talk

• Introduction
• Vignette 1: Learning
• Vignette 2: Cryptography
• Vignette 3: Complexity Lower Bounds
• Further Directions

One-Way Functions (OWFs)

x f(x)

• Efficient computability: f can be computed in
polynomial time

• No efficient invertibility: There is no probabilistic
poly-time procedure A that for most x, produces

 an inverse to f(x)

OWFs and Cryptography

• OWFs are the most fundamental primitive in theoretical cryptography
• Cryptographic tasks such as private-key encryption, pseudorandom

generation, bit commitment, message authentication and digital signatures
are all equivalent to the existence of OWFs

• OWFs are based on various well-studied complexity assumptions such
as the hardness of the Discrete Logarithm problem, Factoring problem
and the Shortest Vector problem in certain lattices

Should We Believe in the Existence of OWFs?

• The existence of OWFs implies that NP ≠ P (and even the hardness of
NP problems on average) but the reverse implication is unknown
• Problems such as Discrete Logarithm and Factoring are known to be

efficiently solvable by quantum algorithms
• Other standard assumptions such as hardness of lattice problems

could be much stronger than what we require

Characterizing OWFs using Meta-Complexity

• Liu and Pass [LP20] showed how to characterize OWFs using a natural
average-case meta-complexity assumption

• Given a polynomial time bound t, we say that Kt is mildly hard on
average over the uniform distribution if there is a polynomial p such that
any probabilistic poly-time algorithm must fail to compute Kt on at least
a 1/p(n) fraction of strings for large enough n

• Theorem [LP20]: Fix any polynomially bounded t > 1.1 n. OWFs exist iff Kt
is mildly hard on average over the uniform dist

• This is the first characterization of OWFs using average-case hardness of
a natural problem

A Further Characterization of OWFs

• Theorem [IRS22]: The following are equivalent:
• One-way functions exist
• Kolmogorov complexity is hard to approximate on average over some

“samplable” distribution, i.e., distribution sampled by some poly-time
procedure

• Characterization based on hardness over any samplable distribution,
while previous characterizations relied on the uniform distribution
• Works even for the uncomputable problem K!

Plan of the Talk

• Introduction
• Vignette 1: Learning
• Vignette 2: Cryptography
• Vignette 3: Complexity Lower Bounds
• Further Directions

Uniform vs Non-Uniform Lower Bounds

• Major open questions in complexity theory, such as the NP vs P
question and the PSPACE vs P question, are about uniform lower
bounds
• Since the 1980s, approaches to these questions have focused on

showing stronger non-uniform lower bounds, i.e., that there is a
problem in NP or in PSPACE that does not have polynomial-size
Boolean circuits
• These approaches have been largely unsuccessful and barriers such as the

natural proof barrier [RR97] are known

• We are interested in new ways of exploiting the uniformity condition
when proving lower bounds

Algorithmic Approaches to Lower Bounds

• While the area of complexity lower bounds has seen infrequent
progress, research in algorithms is thriving [CKLPPS22, BNW22]
• Lower bounds are impossibility results while algorithms results are

possibility results
• Counter-intuitive idea: Could we approach a lower bound by designing

and analysing an algorithm for some computational task that we
believe to be feasible?

Algorithmic Approaches to Lower Bounds

• Williams [W10] proposed an algorithmic approach to proving circuit
lower bounds for NEXP (non-deterministic exponential time), and
applied the approach [W11] to show that a new circuit lower bound
for NEXP against ACC0 circuits
• He showed in general that if SAT can be solved on C-circuits of size m

on n variables in time poly(m)2n-ω(log(n)) , then NEXP does not have
polynomial-size C-circuits

Algorithmic Approaches to Lower Bounds

• Williams’ approach only has the potential to yield lower bounds
against size s circuits for problems that require time more than s to
solve, eg., lower bounds for exponential time against polynomial size
• However, in order to attack the NP vs P problem, we need to find an

approach that applies to a problem solvable non-deterministically in
some fixed polynomial amount of time (such as SAT) and yields
arbitrary polynomial size lower bounds
• We give such an algorithmic approach, but for uniform rather than

non-uniform lower bounds for PSPACE and NP

A Circuit-Based Sampling Task

• Input: A circuit C on n variables and of size s = poly(n), such that C
accepts at least a 2/3 fraction of all inputs
• Task: Output some element of SAT(C) with probability >> 2-n
• Here SAT(C) is the set of satisfying assignments of C

• The trivial algorithm that outputs a random bitstring of length n runs
in time n and outputs each element of SAT(C) with probability 2-n
• Can we find an algorithm that is almost as efficient but beats random guessing

for some element of SAT(C)?

A Simulation-Based Algorithm

• Input: A circuit C on n variables and of size s = poly(n), such that C
accepts at least a 2/3 fraction of all inputs
• Task: Output some element of SAT(C) with probability >> 2-n
• Here SAT(C) is the set of satisfying assignments of C

• The following simple algorithm runs in time (and space) O(sn5) and
outputs some element of SAT(C) with probability >= n4/2n : pick n5
strings of length n independently and uniformly at random, and
output the lexicographically first one that satisfies C

An Algorithmic Approach

Input: A circuit C on n variables of size
poly(n), accepting ≥ 2/3 fraction of inputs

Task: Output some fixed satisfying input y of
C with probability ≥ n4/2n , using space O(n2)

Theorem [S23]: If the task is
solvable, then PSPACE ≠ P

• This gives an algorithmic formulation of the PSPACE ≠ P
problem, which is about lower bounds

• Proof of the implication uses meta-complexity

An Algorithmic Approach

Input: A circuit C on n variables of size poly(n),
accepting ≥ 2/3 fraction of inputs, described
by a compressed representation of size n

Task: Output some fixed satisfying input y of C
with probability ≥ n4/2n , using time O(n2)

Theorem [S23]: If the task is
solvable, then NP ≠ P

• This gives an algorithmic formulation of the NP ≠ P
problem, which is about lower bounds

• Proof of the implication uses meta-complexity

Features of the Approach

• It is an approach to NP vs P that exploits the power of NP
• Several previous approaches to circuit lower bounds for circuit classes C

yielded hard functions in P against C, and therefore are not useful in the most
general setting

• It exploits uniformity of the lower bound
• Previous approaches applied to non-uniform lower bounds and ran up against

the natural proofs barrier [RR97]
• It is possible that uniform lower bounds are much easier to prove than non-

uniform ones

• It is very general, applying to any circuit class C, and therefore could
be useful in making gradual progress

Proof Template

• Reminder of circuit-based sampling task for PSPACE lower bounds
• Given: A circuit C on n variables of size poly(n), accepting ≥ 2/3 fraction of

inputs
• Output: Some fixed satisfying input y of C with probability ≥ n4/2n
• The algorithm should use space O(n2)

• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠
P
• The statement of the theorem does not involve meta-complexity, but

the proof will use meta-complexity as a tool

Proof Template

• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠
P
• We assume, for the sake of contradiction, that PSPACE = P
• We consider a version of Kolmogorov complexity called probabilistic

time-bounded Kolmogorov complexity pKpoly [GKLO22, LOZ22]
• Informally, the pKpoly complexity of a string x is the size of the smallest program

that can generate x in polynomial time given access to a random string

• Let R be the set of strings with pKpoly complexity at least n-1
• Easy to show that R includes at least half the strings of length n

Proof Template

• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ P

• Let R be the set of strings with pKpoly complexity at least n-5

• Easy to show that R includes at least half the strings of length n and also that R
is in PSPACE

• Since PSPACE = P, we have that R has uniform Boolean circuits {Cn}, where
pKpoly(Cn) is at most log(n) + O(1) by uniformity

• By the solvability of the circuit sampling task, we can show that there is a string
y accepted by Cn such that pKpoly(y|Cn) is at most n-3log(n)

• Therefore pKpoly(y) is at most n-log(n) for large n, which contradicts the
assumption that y ε R

Necessity of the Approach

• Theorem: Under standard circuit lower bound assumptions for
exponential time (i.e., that DTIME(2O(n)) requires circuits of size 2Ω(n)),
PSPACE ≠ P if and only if the sampling task is solvable
• Thus the approach is without loss of generality if we believe in strong

circuit lower bounds

Applications of the Approach

• The approach can be used to give new proofs of old results such as the
space hierarchy theorem and Allender’s uniform lower bound for the
Permanent [A99]
• It can also be used to show some new uniform lower bounds in NP

(but still very far off from saying anything interesting about NP vs P)

Plan of the Talk

• Introduction
• Vignette 1: Learning
• Vignette 2: Cryptography
• Vignette 3: Complexity Lower Bounds
• Further Directions

Some Open Problems

• Characterize precisely the complexity status of problems such as MCSP
and MKtP
• Under standard complexity assumptions, can we generate Kpoly-random

strings in polynomial time?
• This is relevant to the question of explicit constructions of combinatorial and

number-theoretic objects such as Ramsey graphs, error-correcting codes

• The Allender program: characterize complexity classes in terms of
resource-bounded reductions to the Kolmogorov-random strings
• For example, NEXP in BPPK in EXPSPACE

• Show unprovability results for statements of the form “x is a Kpoly-
random string”, i.e., resource-bounded versions of Chaitin’s theorem

