Meta-Complexity: Intro
and a Brief Survey

Rahul Santhanam

(University of Oxford)

Plan of the Talk

e Introduction

e Vignette 1: Learning

« Vignette 2: Cryptography

 Vignette 3: Complexity Lower Bounds

e Further Directions

Plan of the Talk

e Introduction

e Vignette 1: Learning

« Vignette 2: Cryptography

 Vignette 3: Complexity Lower Bounds

e Further Directions

Meta-Complexity

« Meta-complexity is the study of computational problems that are
themselves about complexity, eg., the Minimum Circuit Size Problem
(MCSP) or the problem of computing Kolmogorov complexity

e Meta-complexity as a topic: Which complexity classes do various
meta-complexity problems lie in? What complexity lower bounds can
we show for them? What reductions exist between them?

« Meta-complexity as a tool: Use meta-complexity to attack
fundamental questions in computational complexity, learning theory,
cryptography and proof complexity

MCSP (Minimum Circuit Size Problem)

« MICSP: Given the truth table of a Boolean function F, and a parameter
s, does F have Boolean circuits of size s?

« MICSP[s]: Given the truth table of a Boolean function F on log(N)
variables, does F have Boolean circuits of size s(N)?

MCSP and Complexity Lower Bounds

« Showing that DTIME(29(n)) does not have Boolean circuits of size s(n) is
equivalent to efficiently constructing NO instances of MCSP[s(log(N))]
of size N given input 1N

 In one direction, efficiently constructing NO instances gives a way of
generating the truth table of a Boolean function without circuits of size s(n) in
time 2000 = poly(N) (where N = 2n)

e In the other direction, if L in DTIME(2°(n)) does not have Boolean circuits of size
s(n), then we can efficiently generate the truth table of L_in time 20(n) =

poly(N), and this truth table is a NO instance of MCSP[s(log(N))]

The Complexity of MCSP

e MICSPisin NP

e Given the truth table y (of size N) of a Boolean function F, and a parameter s, we
guess a circuit C for F of size s, and check that y is the truth table of the function
computed by C, by running C on each input z of size log(N) and verifying that
C(z) is consistent with y

e Question: Is MCSP in P?
e Naive algorithm incurs an exponential cost by running over all candidate circuits
e No if one-way functions exist [GGIVI86, RR97, KCOO]

e Question: Is MCSP NP-complete?

e Recently Hirahara [H22] showed that a version called Partial-MCSP, where the
input truth table has some “don’t care” symbols, is NP-complete

Meta-Complexity Problems Based on Other
Complexity Measures

e Circuit size can be thought of as a complexity measure on strings, and
VICSP is the computational problem corresponding to this measure

« Similarly, we can consider other complexity measures and the
computational problems corresponding to them
« K: Kolmogorov complexity
« KS: Space-bounded Kolmogorov complexity
« Kroly: Poly-time bounded Kolmogorov complexity

Kolmogorov Complexity

e Let U be a fixed universal Turing machine
e For any string xin 2%, K(x) is min {|p|: U(p, €) = x}
e Givenyin2*, K(x|y)is min{|p]|: U(p,y) = x}
e Basic properties
o Forevery xin2*, K(x) < |x| + O(1)
« For each integer n, there is x of length n such that K(x) = n

Meta-Complexity of K

« MKP: Input is a string x together with a parameter s, question is
whether K(x) <s

 K: Given a string x, compute the K complexity of x

« MIKP and K are uncomputable

o Note that the problems reduce to each other in polynomial time, hence it is
sufficient to consider one of them when analyzing complexity

Uncomputability of Kolmogorov Complexity

e Suppose, for the sake of contradiction, that there is a TM M that computes K

e Define a TM N that accepts x iff K(x) = n

« By Basic Property (2) of K complexity, N accepts at least one string for each input
length n

« Now define a sequence of strings {x_}, |x_|=n, as follows
« Foreach n, x_ is the lexicographically first string of length n that N accepts

« Note that we can compute x_ given n by simulating N on strings of length n in lex
order and outputting the first such string it accepts

o This implies that K(x_) < log(n) + O(1)

« But, by definition of x_, K(x_) = n for each n, which is a contradiction for large enough
n

The Deep Intractability of Kolmogorov
Complexity

« Theorem [C74]: Let X be any effectively axiomatizable sound proof
system. There are only finitely many m for which a statement of the
form “K(x) = m” that can be proved in X!

e Proof: Suppose, for the sake of contradiction, that there are infinitely
many m for which some statement “K(x) > m” is provable in X. Given
m, we can computably find an x such that “K(x) > m” is provable in X
by enumerating potential proofs of such statements in parallel until
we find an actual one. But this x has K(x) < log(m) + O(1), and for large
enough m, this contradicts K(x) > m (which is implied by the
soundness of X)

Kpoly

e Let U be a fixed time-efficient universal Turing machine, and let t be a
fixed polynomial

o Kt(x) = min{|p|: U(p, €) = x in at most t(|x]|) steps}

« We have that for each x, Kt(x) < |x| + O(1), and for each n, there is a
string x of length n such that Kt(x) > n

e Note that K(x) < Kt(x) for each x

Meta-Complexity of Kroly

e Let t be a fixed polynomial

« MKtP: Input is a string x together with a parameter s, question is whether Kt(x) <
S

« Kt: Given a string x, compute the Kt complexity of x

o MINKT: Input is a string x together with parameters s and t in unary,
qguestion is whether Kt(x) <s

o MKtP and MINKT are in NP, and Kt can be computed in poly time with an
NP oracle

« Open whether any of these problems are NP-hard, however all of them
are hard if one-way functions exist [RR97, KC0OO], and SZK reduces to
them all [AD17]

KS

« Let U be a fixed space-efficient universal Turing machine
e KS(x) = min{|p| + s: U(p, €) = x using space at most s}

« We have that for each x, KS(x) < | x| + log(|x]|), and for each n, there is
a string x of length n such that KS(x) > n

o Note that K(x) < KS(x) for each x

Meta-Complexity of KS

« MKSP: Input is a string x together with a parameter s, question is
whether KS(x) <'s

« KS: Given a string x, compute the KS complexity of x

e Observation: MKSP and KS are in polynomial space (by doing a brute-
force search for the optimal program computing x)

e« Theorem [ABKvIVIRO6]: MKSP and KS are complete for PSPACE under
non-uniform poly-size non-adaptive reductions and probabilistic poly-
time Turing reductions

o Note that this hardness is insufficient to establish that MKSP not in LOGSPACE,
and indeed this is still an open question

Plan of the Talk

e Introduction

e Vignette 1: Learning

« Vignette 2: Cryptography

 Vignette 3: Complexity Lower Bounds

e Further Directions

Search to Decision Reductions

e Let L be a problem in NP
e The decision problem for L is to decide, given x, whether x in L

e The search problem for L is to find, given x in L, a proof or witness that
XinL

o Classical result: SAT is decidable in polynomial time iff the search
problem for SAT is solvable in polynomial time

« Proof idea: Iteratively determine the witness bit by bit, using one oracle call to
the decision problem for each bit of the witness

Search to Decision for MCSP?

e The idea of the search-to-decision reduction for SAT doesn’t seem to
work for MICSP

« Unclear how to find a circuit for a given truth table bit by bit just by asking
qguestions about MCSP

« Until recently, nothing was known about whether search reduces to
decision for MCSP

e The search version of MCSP is closely related to learning

Learning and MCSP

e Learning model: The learner is given oracle access to a target Boolean
function F and outputs a “good” hypothesis (i.e., small circuit) C

approximating the target function if there is a good hypothesis
consistent with F

e Search version of MICSP: Given a truth table of a Boolean function F,
output a small circuit C for the truth table if one exists

e Intuitively, if there is an efficient learner, one can solve

(approximately) the search version of MCSP, simply using the input
truth table to answer oracle queries

Learning from Solving MCSP Efficiently

e« Theorem [CIKK16]: Let C be a “reasonable” circuit class. If C-
MCSP[2n"¢] can be solved in time poly(N) (on average over the uniform

distribution), then C-circuits of poly(n) size can be learned in time
) polylog(n)

e Corollary [CIKK16]: The class ACO[Parity] of constant-depth unbounded
fan-in circuits with Parity gates can be learned in quasi-polynomial
time

« Average-case algorithms for ACO[Parity]-MCSP had been known since [RR97],
based on lower bound techniques against ACO[Parity]

Speedup for Learning

« Theorem [OS17]: Let C be a “reasonable” circuit class. There is € >0
such that C-circuits of 2n"¢ size can be learned in time 20 if and only if
C-circuits of poly(n) size can be learned in time 2rolylog(n)

e The statement of this result doesn’t directly involve MICSP or meta-
complexity, but the proof crucially uses the main result of [CIKK16]

Plan of the Talk

e Introduction

e Vignette 1: Learning

« Vignette 2: Cryptography

 Vignette 3: Complexity Lower Bounds

e Further Directions

One-Way Functions (OWFs)

X f(x)

e Efficient computability: f can be computed in
polynomial time

« No efficient invertibility: There is no probabilistic
poly-time procedure A that for most x, produces
an inverse to f(x)

OWEFs and Cryptography

« OWFs are the most fundamental primitive in theoretical cryptography

o Cryptographic tasks such as private-key encryption, pseudorandom
generation, bit commitment, message authentication and digital signatures
are all equivalent to the existence of OWFs

« OWFs are based on various well-studied complexity assumptions such
as the hardness of the Discrete Logarithm problem, Factoring problem
and the Shortest Vector problem in certain lattices

Should We Believe in the Existence of OWFs?

e The existence of OWFs implies that NP # P (and even the hardness of
NP problems on average) but the reverse implication is unknown

e Problems such as Discrete Logarithm and Factoring are known to be
efficiently solvable by quantum algorithms

e Other standard assumptions such as hardness of lattice problems
could be much stronger than what we require

Characterizing OWFs using Meta-Complexity

e Liu and Pass [LP20] showed how to characterize OWFs using a natural
average-case meta-complexity assumption

« Given a polynomial time bound t, we say that Ktis mildly hard on
average over the uniform distribution if there is a polynomial p such that
any probabilistic poly-time algorithm must fail to compute Kt on at least
a 1/p(n) fraction of strings for large enough n

e« Theorem [LP20]: Fix any polynomially bounded t > 1.1 n. OWFs exist iff Kt
is mildly hard on average over the uniform dist

o This is the first characterization of OWFs using average-case hardness of
a natural problem

A Further Characterization of OWFs

e« Theorem [IRS22]: The following are equivalent:
o One-way functions exist

« Kolmogorov complexity is hard to approximate on average over some
“samplable” distribution, i.e., distribution sampled by some poly-time
procedure

« Characterization based on hardness over any samplable distribution,
while previous characterizations relied on the uniform distribution

e Works even for the uncomputable problem K!

Plan of the Talk

e Introduction

e Vignette 1: Learning

« Vignette 2: Cryptography

 Vignette 3: Complexity Lower Bounds

e Further Directions

Uniform vs Non-Uniform Lower Bounds

« Major open questions in complexity theory, such as the NP vs P
guestion and the PSPACE vs P question, are about uniform lower
bounds

 Since the 1980s, approaches to these questions have focused on
showing stronger non-uniform lower bounds, i.e., that there is a
problem in NP or in PSPACE that does not have polynomial-size
Boolean circuits

« These approaches have been largely unsuccessful and barriers such as the
natural proof barrier [RR97] are known

« We are interested in new ways of exploiting the uniformity condition
when proving lower bounds

Algorithmic Approaches to Lower Bounds

« While the area of complexity lower bounds has seen infrequent
progress, research in algorithms is thriving [CKLPPS22, BNW22]

« Lower bounds are impossibility results while algorithms results are
possibility results

e Counter-intuitive idea: Could we approach a lower bound by designing
and analysing an algorithm for some computational task that we
believe to be feasible?

Algorithmic Approaches to Lower Bounds

« Williams [W10] proposed an algorithmic approach to proving circuit
lower bounds for NEXP (non-deterministic exponential time), and
applied the approach [W11] to show that a new circuit lower bound
for NEXP against ACCO circuits

« He showed in general that if SAT can be solved on C-circuits of size m
on n variables in time poly(m)2n-wliogn)) , then NEXP does not have
polynomial-size C-circuits

Algorithmic Approaches to Lower Bounds

« Williams’ approach only has the potential to yield lower bounds
against size s circuits for problems that require time more than s to
solve, eg., lower bounds for exponential time against polynomial size

« However, in order to attack the NP vs P problem, we need to find an
approach that applies to a problem solvable non-deterministically in
some fixed polynomial amount of time (such as SAT) and yields
arbitrary polynomial size lower bounds

« We give such an algorithmic approach, but for uniform rather than
non-uniform lower bounds for PSPACE and NP

A Circuit-Based Sampling Task

e Input: A circuit C on n variables and of size s = poly(n), such that C
accepts at least a 2/3 fraction of all inputs

e Task: Output some element of SAT(C) with probability >> 2-n
o Here SAT(C) is the set of satisfying assignments of C

« The trivial algorithm that outputs a random bitstring of length n runs
in time n and outputs each element of SAT(C) with probability 2-

« Can we find an algorithm that is almost as efficient but beats random guessing
for some element of SAT(C)?

A Simulation-Based Algorithm

e Input: A circuit C on n variables and of size s = poly(n), such that C
accepts at least a 2/3 fraction of all inputs

e Task: Output some element of SAT(C) with probability >> 2-n
o Here SAT(C) is the set of satisfying assignments of C

e The following simple algorithm runs in time (and space) O(sn5) and
outputs some element of SAT(C) with probability >= n4/2n : pick n5
strings of length n independently and uniformly at random, and
output the lexicographically first one that satisfies C

An Algorithmic Approach

Input: A circuit C on n variables of size

poly(n), accepting > 2/3 fraction of inputs Theorem [S23]: If the task is
solvable, then PSPACE # P

Task: Output some fixed satisfying input y of

C with probability > n4/2n, using space O(n2)

« This gives an algorithmic formulation of the PSPACE # P
problem, which is about lower bounds
o Proof of the implication uses meta-complexity

An Algorithmic Approach

Input: A circuit C on n variables of size poly(n),
accepting > 2/3 fraction of inputs, described Theorem [S23]: If the task is
by a compressed representation of size n solvable, then NP # P

Task: Output some fixed satisfying input y of C
with probability > n4/2n, using time O(n?2)

« This gives an algorithmic formulation of the NP # P
problem, which is about lower bounds
o Proof of the implication uses meta-complexity

Features of the Approach

e Itis an approach to NP vs P that exploits the power of NP

« Several previous approaches to circuit lower bounds for circuit classes C
vielded hard functions in P against C, and therefore are not useful in the most
general setting

o It exploits uniformity of the lower bound

o Previous approaches applied to non-uniform lower bounds and ran up against
the natural proofs barrier [RR97]

o Itis possible that uniform lower bounds are much easier to prove than non-
uniform ones

e It is very general, applying to any circuit class C, and therefore could
be useful in making gradual progress

Proof Template

« Reminder of circuit-based sampling task for PSPACE lower bounds

e Given: A circuit C on n variables of size poly(n), accepting > 2/3 fraction of
inputs

o Output: Some fixed satisfying input y of C with probability > n4/2n
o The algorithm should use space O(n?)

« Theorem: If the circuit-based sampling task is solvable, then PSPACE #
P

e The statement of the theorem does not involve meta-complexity, but
the proof will use meta-complexity as a tool

Proof Template

« Theorem: If the circuit-based sampling task is solvable, then PSPACE #
P

« We assume, for the sake of contradiction, that PSPACE =P

« We consider a version of Kolmogorov complexity called probabilistic
time-bounded Kolmogorov complexity pKroly [GKLO22, LOZ22]

« Informally, the pKroly complexity of a string x is the size of the smallest program
that can generate x in polynomial time given access to a random string

e Let R be the set of strings with pKroly complexity at least n-1

« Easy to show that R includes at least half the strings of length n

Proof Template

e Theorem: If the circuit-based sampling task is solvable, then PSPACE # P
e Let R be the set of strings with pKroly complexity at least n-5

e Easy to show that R includes at least half the strings of length n and also that R
is in PSPACE

« Since PSPACE = P, we have that R has uniform Boolean circuits {C_}, where
pKroly(C) is at most log(n) + O(1) by uniformity

« By the solvability of the circuit sampling task, we can show that there is a string
y accepted by C_such that pKroly(y|C) is at most n-3log(n)

e Therefore pKroly(y) is at most n-log(n) for large n, which contradicts the
assumption thaty € R

Necessity of the Approach

« Theorem: Under standard circuit lower bound assumptions for
exponential time (i.e., that DTIME(20()) requires circuits of size 22(n)),
PSPACE # P if and only if the sampling task is solvable

e Thus the approach is without loss of generality if we believe in strong
circuit lower bounds

Applications of the Approach

e The approach can be used to give new proofs of old results such as the
space hierarchy theorem and Allender’s uniform lower bound for the
Permanent [A99]

e It can also be used to show some new uniform lower bounds in NP
(but still very far off from saying anything interesting about NP vs P)

Plan of the Talk

e Introduction

e Vignette 1: Learning

« Vignette 2: Cryptography

 Vignette 3: Complexity Lower Bounds

e Further Directions

Some Open Problems

o Characterize precisely the complexity status of problems such as MICSP
and MKtP

« Under standard complexity assumptions, can we generate Kroly-random
strings in polynomial time?
« This is relevant to the question of explicit constructions of combinatorial and
number-theoretic objects such as Ramsey graphs, error-correcting codes

« The Allender program: characterize complexity classes in terms of
resource-bounded reductions to the Kolmogorov-random strings

o For example, NEXP in BPPKin EXPSPACE

o Show unprovability results for statements of the form “x is a Kpoly-
random string”, i.e., resource-bounded versions of Chaitin’s theorem

