
Meta-Complexity: Intro  
and a Brief Survey

Rahul Santhanam 
(University of Oxford)



Plan of the Talk

• Introduction 
• Vignette 1: Learning 
• Vignette 2: Cryptography 
• Vignette 3: Complexity Lower Bounds 
• Further Directions



Plan of the Talk

• Introduction 
• Vignette 1: Learning 
• Vignette 2: Cryptography 
• Vignette 3: Complexity Lower Bounds 
• Further Directions



Meta-Complexity

• Meta-complexity is the study of computational problems that are 
themselves about complexity, eg., the Minimum Circuit Size Problem 
(MCSP) or the problem of computing Kolmogorov complexity 
• Meta-complexity as a topic: Which complexity classes do various 

meta-complexity problems lie in? What complexity lower bounds can 
we show for them? What reductions exist between them? 
• Meta-complexity as a tool: Use meta-complexity to attack 

fundamental questions in computational complexity, learning theory, 
cryptography and proof complexity



MCSP (Minimum Circuit Size Problem)

• MCSP: Given the truth table of a Boolean function F, and a parameter 
s, does F have Boolean circuits of size s? 
• MCSP[s]: Given the truth table of a Boolean function F on log(N) 

variables, does F have Boolean circuits of size s(N)?



MCSP and Complexity Lower Bounds

• Showing that DTIME(2O(n)) does not have Boolean circuits of size s(n) is 
equivalent to efficiently constructing NO instances of MCSP[s(log(N))] 
of size N given input 1N 
• In one direction, efficiently constructing NO instances gives a way of 

generating the truth table of a Boolean function without circuits of size s(n) in 
time 2O(n) = poly(N)  (where N = 2n) 
• In the other direction, if L in DTIME(2O(n)) does not have Boolean circuits of size 

s(n), then we can efficiently generate the truth table of Ln in time 2O(n) = 
poly(N), and this truth table is a NO instance of MCSP[s(log(N))]



The Complexity of MCSP

• MCSP is in NP 
• Given the truth table y (of size N) of a Boolean function F, and a parameter s, we 

guess a circuit C for F of size s, and check that y is the truth table of the function 
computed by C, by running C on each input z of size log(N) and verifying that 
C(z) is consistent with y   

• Question: Is MCSP in P? 
• Naïve algorithm incurs an exponential cost by running over all candidate circuits 
• No if one-way functions exist [GGM86, RR97, KC00] 

• Question: Is MCSP NP-complete? 
• Recently Hirahara [H22] showed that a version called Partial-MCSP, where the 

input truth table has some “don’t care” symbols, is NP-complete



Meta-Complexity Problems Based on Other 
Complexity Measures

• Circuit size can be thought of as a complexity measure on strings, and 
MCSP is the computational problem corresponding to this measure 
• Similarly, we can consider other complexity measures and the 

computational problems corresponding to them 
• K: Kolmogorov complexity 
• KS: Space-bounded Kolmogorov complexity 
• Kpoly: Poly-time bounded Kolmogorov complexity



Kolmogorov Complexity

• Let U be a fixed universal Turing machine 
• For any string x in Σ*, K(x) is min {|p|: U(p, ε) = x}  
• Given y in Σ*, K(x|y) is min {|p|: U(p,y) = x} 

• Basic properties 
• For every x in Σ*, K(x) ≤ |x| + O(1) 
• For each integer n, there is x of length n such that K(x) ≥ n



Meta-Complexity of K

• MKP: Input is a string x together with a parameter s, question is 
whether K(x) ≤ s 
• K: Given a string x, compute the K complexity of x  
• MKP and K are uncomputable 
• Note that the problems reduce to each other in polynomial time, hence it is 

sufficient to consider one of them when analyzing complexity



Uncomputability of Kolmogorov Complexity

• Suppose, for the sake of contradiction, that there is a TM M that computes K 
• Define a TM N that accepts x iff K(x) ≥ n 

• By Basic Property (2) of K complexity, N accepts at least one string for each input 
length n 

• Now define a sequence of strings {xn}, |xn|=n, as follows 
• For each n, xn is the lexicographically first string of length n that N accepts 

• Note that we can compute xn given n by simulating N on strings of length n in lex 
order and outputting the first such string it accepts 

• This implies that K(xn) ≤ log(n) + O(1) 

• But, by definition of xn, K(xn) ≥ n for each n, which is a contradiction for large enough 
n



The Deep Intractability of Kolmogorov 
Complexity

• Theorem [C74]: Let X be any effectively axiomatizable sound proof 
system. There are only finitely many m for which a statement of the 
form “K(x) ≥ m” that can be proved in X! 
• Proof: Suppose, for the sake of contradiction, that there are infinitely 

many m for which some statement “K(x) ≥ m” is provable in X. Given 
m, we can computably find an x such that “K(x) ≥ m” is provable in X 
by enumerating potential proofs of such statements in parallel until 
we find an actual one. But this x has K(x) ≤ log(m) + O(1), and for large 
enough m, this contradicts  K(x) ≥ m (which is implied by the 
soundness of X)



Kpoly

• Let U be a fixed time-efficient universal Turing machine, and let t be a 
fixed polynomial 
• Kt(x) = min{|p|: U(p, ε) = x in at most t(|x|) steps}  
• We have that for each x, Kt(x) ≤ |x| + O(1), and for each n, there is a 

string x of length n such that Kt(x) ≥ n  
• Note that K(x) ≤ Kt(x) for each x 



Meta-Complexity of Kpoly

• Let t be a fixed polynomial 
• MKtP: Input is a string x together with a parameter s, question is whether Kt(x) ≤ 

s 
• Kt: Given a string x, compute the Kt complexity of x  

• MINKT: Input is a string x together with parameters s and t in unary, 
question is whether Kt(x) ≤ s  
• MKtP and MINKT are in NP, and Kt can be computed in poly time with an 

NP oracle 
• Open whether any of these problems are NP-hard, however all of them 

are hard if one-way functions exist [RR97, KC00], and SZK reduces to 
them all [AD17]



KS

• Let U be a fixed space-efficient universal Turing machine 
• KS(x) = min{|p| + s: U(p, ε) = x using space at most s}  
• We have that for each x, KS(x) ≤ |x| + log(|x|), and for each n, there is 

a string x of length n such that KS(x) ≥ n  
• Note that K(x) ≤ KS(x) for each x



Meta-Complexity of KS

• MKSP: Input is a string x together with a parameter s, question is 
whether KS(x) ≤ s 
• KS: Given a string x, compute the KS complexity of x  
• Observation: MKSP and KS are in polynomial space (by doing a brute-

force search for the optimal program computing x) 
• Theorem [ABKvMR06]: MKSP and KS are complete for PSPACE under 

non-uniform poly-size non-adaptive reductions and probabilistic poly-
time Turing reductions 
• Note that this hardness is insufficient to establish that MKSP not in LOGSPACE, 

and indeed this is still an open question
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Search to Decision Reductions

• Let L be a problem in NP 
• The decision problem for L is to decide, given x, whether x in L 
• The search problem for L is to find, given x in L, a proof or witness that 

x in L 
• Classical result: SAT is decidable in polynomial time iff the search 

problem for SAT is solvable in polynomial time 
• Proof idea: Iteratively determine the witness bit by bit, using one oracle call to 

the decision problem for each bit of the witness



Search to Decision for MCSP?

• The idea of the search-to-decision reduction for SAT doesn’t seem to 
work for MCSP 
• Unclear how to find a circuit for a given truth table bit by bit just by asking 

questions about MCSP 

• Until recently, nothing was known about whether search reduces to 
decision for MCSP 
• The search version of MCSP is closely related to learning



Learning and MCSP

• Learning model: The learner is given oracle access to a target Boolean 
function F and outputs a “good” hypothesis (i.e., small circuit) C 
approximating the target function if there is a good hypothesis 
consistent with F 
• Search version of MCSP: Given a truth table of a Boolean function F, 

output a small circuit C for the truth table if one exists 
• Intuitively, if there is an efficient learner, one can solve 

(approximately) the search version of MCSP, simply using the input 
truth table to answer oracle queries



Learning from Solving MCSP Efficiently

• Theorem [CIKK16]: Let C be a “reasonable” circuit class. If C-
MCSP[2n^ε] can be solved in time poly(N) (on average over the uniform 
distribution), then C-circuits of poly(n) size can be learned in time 
2polylog(n) 
• Corollary [CIKK16]: The class AC0[Parity] of constant-depth unbounded 

fan-in circuits with Parity gates can be learned in quasi-polynomial 
time 
• Average-case algorithms for AC0[Parity]-MCSP had been known since [RR97], 

based on lower bound techniques against AC0[Parity] 



Speedup for Learning

• Theorem [OS17]: Let C be a “reasonable” circuit class. There is ε > 0 
such that C-circuits of 2n^ε size can be learned in time 2O(n) if and only if 
C-circuits of poly(n) size can be learned in time 2polylog(n) 
• The statement of this result doesn’t directly involve MCSP or meta-

complexity, but the proof crucially uses the main result of [CIKK16]
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One-Way Functions (OWFs)

x f(x)

• Efficient computability: f can be computed in 
polynomial time 

• No efficient invertibility: There is no probabilistic 
poly-time procedure A that for most x, produces 

     an inverse to f(x)



OWFs and Cryptography

• OWFs are the most fundamental primitive in theoretical cryptography 
• Cryptographic tasks such as private-key encryption, pseudorandom 

generation, bit commitment, message authentication and digital signatures 
are all equivalent to the existence of OWFs 

• OWFs are based on various well-studied complexity assumptions such 
as the hardness of the Discrete Logarithm problem, Factoring problem 
and the Shortest Vector problem in certain lattices



Should We Believe in the Existence of OWFs?

• The existence of OWFs implies that NP ≠ P (and even the hardness of 
NP problems on average) but the reverse implication is unknown 
• Problems such as Discrete Logarithm and Factoring are known to be 

efficiently solvable by quantum algorithms 
• Other standard assumptions such as hardness of lattice problems 

could be much stronger than what we require



Characterizing OWFs using Meta-Complexity

• Liu and Pass [LP20] showed how to characterize OWFs using a natural 
average-case meta-complexity assumption 

• Given a polynomial time bound t, we say that Kt is mildly hard on 
average over the uniform distribution if there is a polynomial p such that 
any probabilistic poly-time algorithm must fail to compute Kt on at least 
a 1/p(n) fraction of strings for large enough n  

• Theorem [LP20]: Fix any polynomially bounded t > 1.1 n. OWFs exist iff Kt 
is mildly hard on average over the uniform dist 

• This is the first characterization of OWFs using average-case hardness of 
a natural problem



A Further Characterization of OWFs

• Theorem [IRS22]: The following are equivalent: 
• One-way functions exist 
• Kolmogorov complexity is hard to approximate on average over some 

“samplable” distribution, i.e., distribution sampled by some poly-time 
procedure 

• Characterization based on hardness over any samplable distribution, 
while previous characterizations relied on the uniform distribution 
• Works even for the uncomputable problem K!
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Uniform vs Non-Uniform Lower Bounds

• Major open questions in complexity theory, such as the NP vs P 
question and the PSPACE vs P question, are about uniform lower 
bounds 
• Since the 1980s, approaches to these questions have focused on 

showing stronger non-uniform lower bounds, i.e., that there is a 
problem in NP or in PSPACE that does not have polynomial-size 
Boolean circuits 
• These approaches have been largely unsuccessful and barriers such as the 

natural proof barrier [RR97] are known 

• We are interested in new ways of exploiting the uniformity condition 
when proving lower bounds



Algorithmic Approaches to Lower Bounds

• While the area of complexity lower bounds has seen infrequent 
progress, research in algorithms is thriving [CKLPPS22, BNW22] 
• Lower bounds are impossibility results while algorithms results are 

possibility results 
• Counter-intuitive idea: Could we approach a lower bound by designing 

and analysing an algorithm for some computational task that we 
believe to be feasible?



Algorithmic Approaches to Lower Bounds

• Williams [W10] proposed an algorithmic approach to proving circuit 
lower bounds for NEXP (non-deterministic exponential time), and 
applied the approach [W11] to show that a new circuit lower bound 
for NEXP against ACC0 circuits 
• He showed in general that if SAT can be solved on C-circuits of size m 

on n variables in time poly(m)2n-ω(log(n)) , then NEXP does not have 
polynomial-size C-circuits



Algorithmic Approaches to Lower Bounds

• Williams’ approach only has the potential to yield lower bounds 
against size s circuits for problems that require time more than s to 
solve, eg., lower bounds for exponential time against polynomial size 
• However, in order to attack the NP vs P problem, we need to find an 

approach that applies to a problem solvable non-deterministically in 
some fixed polynomial amount of time (such as SAT) and yields 
arbitrary polynomial size lower bounds 
• We give such an algorithmic approach, but for uniform rather than 

non-uniform lower bounds for PSPACE and NP



A Circuit-Based Sampling Task

• Input: A circuit C on n variables and of size s = poly(n), such that C 
accepts at least a 2/3 fraction of all inputs 
• Task: Output some element of SAT(C) with probability >> 2-n 
• Here SAT(C) is the set of satisfying assignments of C 

• The trivial algorithm that outputs a random bitstring of length n runs 
in time n and outputs each element of SAT(C) with probability 2-n 
• Can we find an algorithm that is almost as efficient but beats random guessing 

for some element of SAT(C)?



A Simulation-Based Algorithm

• Input: A circuit C on n variables and of size s = poly(n), such that C 
accepts at least a 2/3 fraction of all inputs 
• Task: Output some element of SAT(C) with probability >> 2-n 
• Here SAT(C) is the set of satisfying assignments of C 

• The following simple algorithm runs in time (and space) O(sn5) and 
outputs some element of SAT(C) with probability >= n4/2n : pick n5 
strings of length n independently and uniformly at random, and 
output the lexicographically first one that satisfies C



An Algorithmic Approach

Input: A circuit C on n variables of size 
poly(n), accepting ≥ 2/3 fraction of inputs 

Task: Output some fixed satisfying input y of 
C with probability ≥ n4/2n , using space O(n2)

Theorem [S23]: If the task is 
solvable, then PSPACE ≠ P

• This gives an algorithmic formulation of the PSPACE ≠ P 
problem, which is about lower bounds 

• Proof of the implication uses meta-complexity



An Algorithmic Approach

Input: A circuit C on n variables of size poly(n), 
accepting ≥ 2/3 fraction of inputs, described 
by a compressed representation of size n 

Task: Output some fixed satisfying input y of C 
with probability ≥ n4/2n , using time O(n2)

Theorem [S23]: If the task is 
solvable, then NP ≠ P

• This gives an algorithmic formulation of the NP ≠ P 
problem, which is about lower bounds 

• Proof of the implication uses meta-complexity



Features of the Approach

• It is an approach to NP vs P that exploits the power of NP 
• Several previous approaches to circuit lower bounds for circuit classes C 

yielded hard functions in P against C, and therefore are not useful in the most 
general setting 

• It exploits uniformity of the lower bound 
• Previous approaches applied to non-uniform lower bounds and ran up against 

the natural proofs barrier [RR97] 
• It is possible that uniform lower bounds are much easier to prove than non-

uniform ones 

• It is very general, applying to any circuit class C, and therefore could 
be useful in making gradual progress



Proof Template

• Reminder of circuit-based sampling task for PSPACE lower bounds 
• Given: A circuit C on n variables of size poly(n), accepting ≥ 2/3 fraction of 

inputs 
• Output: Some fixed satisfying input y of C with probability ≥ n4/2n  
• The algorithm should use space O(n2)  

• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ 
P 
• The statement of the theorem does not involve meta-complexity, but 

the proof will use meta-complexity as a tool



Proof Template

• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ 
P 
• We assume, for the sake of contradiction, that PSPACE = P 
• We consider a version of Kolmogorov complexity called probabilistic 

time-bounded Kolmogorov complexity pKpoly [GKLO22, LOZ22] 
• Informally, the pKpoly complexity of a string x is the size of the smallest program 

that can generate x in polynomial time given access to a random string 

• Let R be the set of strings with pKpoly complexity at least n-1 
• Easy to show that R includes at least half the strings of length n



Proof Template

• Theorem: If the circuit-based sampling task is solvable, then PSPACE ≠ P 

• Let R be the set of strings with pKpoly complexity at least n-5 

• Easy to show that R includes at least half the strings of length n and also that R 
is in PSPACE  

• Since PSPACE = P, we have that R has uniform Boolean circuits {Cn}, where 
pKpoly(Cn) is at most log(n) + O(1) by uniformity 

• By the solvability of the circuit sampling task, we can show that there is a string 
y accepted by Cn such that pKpoly(y|Cn) is at most n-3log(n) 

• Therefore pKpoly(y) is at most n-log(n) for large n, which contradicts the 
assumption that y ε R



Necessity of the Approach

• Theorem: Under standard circuit lower bound assumptions for 
exponential time (i.e., that DTIME(2O(n)) requires circuits of size 2Ω(n) ), 
PSPACE ≠ P if and only if the sampling task is solvable 
• Thus the approach is without loss of generality if we believe in strong 

circuit lower bounds



Applications of the Approach

• The approach can be used to give new proofs of old results such as the 
space hierarchy theorem and Allender’s uniform lower bound for the 
Permanent [A99] 
• It can also be used to show some new uniform lower bounds in NP 

(but still very far off from saying anything interesting about NP vs P) 
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Some Open Problems

• Characterize precisely the complexity status of problems such as MCSP 
and MKtP 
• Under standard complexity assumptions, can we generate Kpoly-random 

strings in polynomial time? 
• This is relevant to the question of explicit constructions of combinatorial and 

number-theoretic objects such as Ramsey graphs, error-correcting codes  

• The Allender program: characterize complexity classes in terms of 
resource-bounded reductions to the Kolmogorov-random strings 
• For example, NEXP in BPPK in EXPSPACE 

• Show unprovability results for statements of the form “x is a Kpoly-
random string”, i.e., resource-bounded versions of Chaitin’s theorem


