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Effective reals

Definition

A computable approximation is a computable Cauchy sequence of
rationals reals.
A Cauchy name is a computable approximation a0, a1, . . . that fulfills
|am − an| ≤ 2−m for every n ≥ m ≥ 0.

left-c.e. reals: limit points of strictly increasing computable
approximations

computable reals: limit points of Cauchy names
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Computable functions

On rationals: computable by a Turing machine

Definition

A function f : A ⊆ R → R is computable if there is a Turing
functional that, for every Cauchy name p0, p1, · · · → x ∈ A as an oracle,
return a Cauchy name q0, q1, · · · → f(x).

On a compact domain A, the following equivalent characterization of
computability holds by Pour-El and Richards [8].

Proposition

A function f : A ⊆ R → R is computable iff

there is a computable function h : N → N such that, for every n
and |x− y| ≤ 2−h(n), it holds that |f(x)− f(y)| ≤ 2−n and

for some computable sequence of reals r0, r1, . . . , which is dense in
[0, 1], the sequence f(vi)i∈N is computable.
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Algorithmic randomness: topological characterizations

A Martin-Löf test is a uniformly effective sequence of open sets (U0, U1, . . .), such
that the set Un has a uniform measure of at most 2−n−1. In case the (uniform)

measure of Un is exactly equal to 2−n−1 for every n, the Martin-Löf test (U0, U1, . . .)

is called Schnorr test.
A real α fails the Martin-Löf test (U0, U1, . . .) if α ∈ Ui for every i.

A Solovay test is a uniformly effective sequence of intervals (S0, S1, . . .), such that
the sum of |Sn| is finite. In case the latter sum is computable, the Solovay test

(S0, S1, . . .) is called total.

A real α fails the Solovay test (S0, S1, . . .) if α ∈ Si. for infinitely many i.

A real α is Martin-Löf random (or, shortly, ML random)
: ⇐⇒ no Martin-Löf test fails on α

⇐⇒ no Solovay test fails on α.

A real α is Schnorr random
: ⇐⇒ no Schnorr test fails on α

⇐⇒ no total Solovay test fails on α.
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Unpredictability and martingales

A martingale is a function M : 2<ω → R that fulfills for all σ the equality

M(σ0) +M(σ1) = 2M(σ)

A supermartingale is a function M : 2<ω → R that fulfills for all σ the inequality

M(σ0) +M(σ1) ≤ 2M(σ)

A (super)martingale M succeeds on a real α if lim sup
n→∞

M(A ↾ n) = ∞.

Atomless martingales ↔ nondecreasing continuous functions on [0, 1] with f(0) = 0
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Algorithmic randomness as unpredictability

A real α is Martin-Löf random
⇐⇒ no c.e. (super)martingale succeeds on α.
⇐⇒ no c.e. (super)martingale satisfies lim

n→∞
M(α ↾ n) = ∞.

A real α is computably random
: ⇐⇒ no computable martingale succeeds on α.
⇐⇒ no computable martingale M satisfies lim

n→∞
M(α ↾ n) = ∞.

a real α is Schnorr random
: ⇐⇒ no computable martingale M satisfies the property

∃∞n : M(α ↾ f(n)) ≥ n

for any computable index function f .
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Computable randomness and differentiability

Theorem (Brattka, Miller, Nies)

For every real x ∈ (0, 1), the following equivalence holds:

x is computably random ⇐⇒ every computable nondecreasing
function f : [0, 1] → R is differentiable in x.

Theorem (Freer, Kjos-Hanssen, Nies, Stephan)

For every real x ∈ (0, 1), the following equivalence holds:

x is computably random ⇐⇒ every computable Lipschitz
continuous function f : [0, 1] → R is differentiable in x.
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Outline of the proof of the =⇒ -part
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Functions of bounded variation

Definition

Let f be a function (on rationals or reals). Then

Vf = sup

{
n−1∑
i=0

|f(ti+1)− f(ti)| :

{
t0, . . . , tn ∈ dom(f) and

t0 < · · · < tn

}
∈ R∪{∞}

is called variation of f .
F is a function of bounded variation if Vf < ∞.

Proposition (Jordan’s theorem)

1 A function f : [0, 1] → R is a function on bounded variation iff
f = g1 − g2 for two nondecreasing functions g1, g2 : [0, 1] → R

2 A function f : [0, 1]|Q → Q is a function on bounded variation iff
f = g1 − g2 for two nondecreasing functions g1, g2 : [0, 1]|Q → Q.
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Martin-Löf randomness and differentiability

Theorem (Brattka, Miller, Nies)

For every real x ∈ (0, 1), the following equivalence holds:

x is ML random ⇐⇒ every function of bounded variation
f : [0, 1] → R is differentiable in x.

Ivan Titov (Université de Bordeaux, Ruprecht-Karls-Universität Heidelberg)Randomness and differentiation 11 / 24



Solovay reducibility on LEFT-CE

On left-c.e. reals: measure of convergence speed of approximations

Definition

A left-c.e. real α is Solovay reducible to left-c.e. real β, written α≤Sβ if
there exists two monotone increasing computable approximations
a0, a1, · · · ↗ α and b0, b1, . . . β and a constant c > 0 such that

α− an < c(β − bn)
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Translation functions and ML randomness: the
LEFT-CE case

Theorem (Barmpalias, Lewis-Pye, 2017)

Let α be a left-c.e. real and β be a ML random left-c.e. real. Then
there exists a constant d such that, for every two monotone increasing
approximations a0, a1, · · · ↗ α and b0, b1, · · · ↗ β, it holds that

lim
n→∞

α− an
β − bn

= d.

In particular, it implies that α≤Sβ.
Moreover, d = 0 iff α is ML nonrandom.

Ivan Titov (Université de Bordeaux, Ruprecht-Karls-Universität Heidelberg)Randomness and differentiation 13 / 24



Ourline of the proof
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Solovay reducibility via translation functions: general
frame

Definition (T.)

Let α and β be two reals.

A computable function f :⊆ Q → Q that fulfills Q|[0,β) ⊆ dom(f) and
lim
q↗β

f(q) = α is called Q-translation funciton from β to α.

A computable function f :⊆ R → R that fulfills [0, β) ⊆ dom(f) and
lim
x↗β

f(x) = α is called R-translation funciton from β to α.

α is reducible to β via a (Q- or R-)translation function f if there exists
a constant c such that

lim sup
x↗β

x∈dom(f)

|α− f(x)|
|β − x|

≤ c
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Functional versions of Solovay reducibility

Restricting the set of admissible translation functions, we obtain equivalent

characterizations of already known generalizations of Solovay reducibility outside of
LEFT-CE; all of them except ≤loc

cL coincide with ≤S on LEFT-CE.

(Solovay, 1975) α≤Sβ iff α≤∗
Sβ via Q-translation function f with f(Q|[0,α)) ⊆ [0, β);

(Titov, 2023) α≤m
S β iff α≤Sβ via monotone nondecreasing f ;

(Kumabe, Miyabe, Suzuki, 2024) α≤open
cL β iff α≤∗

Sβ via R-translation function f .
Moreover, f can be chosen Lipschitz continuous.

(Kumabe, Miyabe, Mizusawa, Suzuki, 2020) α≤R
Sβ iff α≤open

cL β via R-translation
function f with (f [0, α)) ⊆ [0, β). Moreover, f can be chosen Lipschitz continuous and

nondecreasing.

(Kumabe, Miyabe, Suzuki, 2024) α≤loc
cL β iff α≤R

Sβ iff α≤open
cL β via R-translation

function f with [0, 1] ⊆ dom(f). Moreover, f can be chosen Lipschitz continuous.
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Translation functions and ML-randomness:
generalizations

Theorem (T., 2024)

Let α be a real and β be a ML random real. Then there exists a
constant d such that, for monotone nondecreasing Q-translation
function from β to α (if exists), it holds that

lim
q↗β

α− f(q)

β − q
= d.

In particular, it implies that α≤m
S β.

left differentiability in β.

The monotonicity requirement cannot be omitted!
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Translation functions and ML-randomness:
generalizations (NEW)

Similar results can be achieved for other types of admissible translation functions.

Theorem
Let α be a real and β be a ML random real. Then there exists a constant d such that

For every R-translation function of bounded variation f from β to α (if exists), it

holds that

lim
n→∞

|α− f(q)|
|β − q|

= d. (1)

In particular, if such function exists, then α≤open
cL β. Moreover, if α is Martin-Löf

nonrandom, then d = 0.

For every monotone nondecreasing R-translation function from β to α (if exists),

(1) holds. In particular, if such function exists, then α≤m
S β. Moreover, if α is

Martin-Löf nonrandom, then d = 0.

For every Q-translation function of bounded variation f from β to α (if exists), (1)
holds.
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Applications: differentiability in a fixed-point

Corollary

For every real Martin-Löf random real β, the following statements hold

Every nondecreasing R-translation function f from β to β satisfies

lim
x↗β

β − f(x)

β − x
= 1. (2)

Every R-translation function f of bounded variation from β to β
satisfies (2).
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Speedability of left-c.e. reals

Definition

A left-c.e. is speedable if there exists its increasing computable
approximation a0, a1, . . . and a computable index function f , such that
f(n) ≥ n for all n, and a constant ρ < 1 such that

lim inf
n→∞

α− af(n)

α− an
< ρ

independent of the choice of ρ and a0, a1, . . . ;

Martin-Löf random left-c.e. reals are nonspeedable but not vice
versa (Hölzl, Janicki, 2023)
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differentiability in a fixed-point

Theorem

Let β be a left-c.e. real.
Then the following statements are equivalent.

β is nonspeedable.

Every nondecreasing R-translation function f of bounded variation
from β to β satisfies (2).

The following statements are also equivalent

β is Martin-Löf random.

Every R-translation function of bounded variation f from β to β
satisfies (2).

What happens outside of LEFT-CE?
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Translation functions and other randomness notions

Conjecture

Let α be a real and β be a Schnorr random real. Then there exists a
constant d such that, for every R-translation function from β to α
defined on [0, 1], it holds that

lim
n→∞

|α− f(q)|
|β − q|

= d.

In particular, it implies that α≤loc
cL β.

What about the converse directions?
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