Randomness and differentiation

Ivan Titov

Université de Bordeaux, Ruprecht-Karls-Universität Heidelberg

1 Background

- 2 Algorithmic randomness and differentiability
- 3 Solovay reducibility
- 4 Main results
- **5** Applications

Definition

A **computable approximation** is a computable Cauchy sequence of rationals reals.

A **Cauchy name** is a computable approximation a_0, a_1, \ldots that fulfills $|a_m - a_n| \leq 2^{-m}$ for every $n \geq m \geq 0$.

- **left-c.e. reals**: limit points of strictly increasing computable approximations
- computable reals: limit points of Cauchy names

Computable functions

• On rationals: computable by a Turing machine

Definition

A function $f : A \subseteq \mathbb{R} \to \mathbb{R}$ is **computable** if there is a Turing functional that, for every Cauchy name $p_0, p_1, \dots \to x \in A$ as an oracle, return a Cauchy name $q_0, q_1, \dots \to f(x)$.

On a compact domain A, the following equivalent characterization of computability holds by Pour-El and Richards [8].

Proposition

- A function $f: A \subseteq \mathbb{R} \to \mathbb{R}$ is computable iff
 - there is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that, for every nand $|x - y| \le 2^{-h(n)}$, it holds that $|f(x) - f(y)| \le 2^{-n}$ and
 - for some computable sequence of reals r_0, r_1, \ldots , which is dense in [0, 1], the sequence $f(v_i)_{i \in \mathbb{N}}$ is computable.

- A Martin-Löf test is a uniformly effective sequence of open sets (U₀, U₁,...), such that the set U_n has a uniform measure of at most 2⁻ⁿ⁻¹. In case the (uniform) measure of U_n is exactly equal to 2⁻ⁿ⁻¹ for every n, the Martin-Löf test (U₀, U₁,...) is called Schnorr test.
 A real α fails the Martin-Löf test (U₀, U₁,...) if α ∈ U_i for every i.
- A Solovay test is a uniformly effective sequence of intervals (S₀, S₁,...), such that the sum of |S_n| is finite. In case the latter sum is computable, the Solovay test (S₀, S₁,...) is called total.
 A real α fails the Solovay test (S₀, S₁,...) if α ∈ S_i. for infinitely many i.
- A real α is Martin-Löf random (or, shortly, ML random)
 : ⇔ no Martin-Löf test fails on α
 ⇔ no Solovay test fails on α.
- A real α is Schnorr random
 - $:\iff$ no Schnorr test fails on α
 - \iff no total Solovay test fails on α .

• A martingale is a function $M: 2^{<\omega} \to \mathbb{R}$ that fulfills for all σ the equality

 $M(\sigma 0) + M(\sigma 1) = 2M(\sigma)$

• A supermartingale is a function $M: 2^{<\omega} \to \mathbb{R}$ that fulfills for all σ the inequality

 $M(\sigma 0) + M(\sigma 1) \le 2M(\sigma)$

• A (super)martingale M succeeds on a real α if $\limsup_{n \to \infty} M(A \upharpoonright n) = \infty$. Atomless martingales \leftrightarrow nondecreasing continuous functions on [0, 1] with f(0) = 0

- A real α is Martin-Löf random
 - \iff no c.e. (super)martingale succeeds on α .
 - \iff no c.e. (super)martingale satisfies $\lim_{n \to \infty} M(\alpha \upharpoonright n) = \infty$.
- A real α is computably random
 - : \iff no computable martingale succeeds on α .
 - \iff no computable martingale M satisfies $\lim_{n \to \infty} M(\alpha \upharpoonright n) = \infty$.
- a real α is Schnorr random
 - : \iff no computable martingale M satisfies the property

$$\exists^{\infty}n:\,M(\alpha\restriction f(n))\geq n$$

for any computable index function f.

Theorem (Brattka, Miller, Nies)

For every real $x \in (0, 1)$, the following equivalence holds:

• x is computably random \iff every computable **nondecreasing** function $f: [0,1] \rightarrow \mathbb{R}$ is differentiable in x.

Theorem (Freer, Kjos-Hanssen, Nies, Stephan)

For every real $x \in (0, 1)$, the following equivalence holds:

• x is computably random \iff every computable Lipschitz continuous function $f : [0,1] \rightarrow \mathbb{R}$ is differentiable in x.

Outline of the proof of the \implies -part

Definition

Let f be a function (on rationals or reals). Then

$$V_f = \sup \left\{ \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| : \begin{cases} t_0, \dots, t_n \in \text{dom}(f) \text{ and} \\ t_0 < \dots < t_n \end{cases} \right\}$$

is called **variation** of f. F is a function of **bounded variation** if $V_f < \infty$.

Proposition (Jordan's theorem)

A function f: [0,1] → ℝ is a function on bounded variation iff f = g₁ - g₂ for two nondecreasing functions g₁, g₂: [0,1] → ℝ
A function f: [0,1]|_Q → Q is a function on bounded variation iff f = g₁ - g₂ for two nondecreasing functions g₁, g₂: [0,1]|_Q → Q.

 $\in \mathbb{R} \cup \{\infty\}$

Theorem (Brattka, Miller, Nies)

For every real $x \in (0, 1)$, the following equivalence holds:

• $x \text{ is } ML \text{ random} \iff every \text{ function of bounded variation} f: [0, 1] \to \mathbb{R} \text{ is differentiable in } x.$

• On left-c.e. reals: measure of convergence speed of approximations

Definition

A left-c.e. real α is Solovay reducible to left-c.e. real β , written $\alpha \leq_{\mathrm{S}} \beta$ if there exists two monotone increasing computable approximations $a_0, a_1, \dots \nearrow \alpha$ and $b_0, b_1, \dots \beta$ and a constant c > 0 such that

$$\alpha - a_n < c(\beta - b_n)$$

Translation functions and ML randomness: the LEFT-CE case

Theorem (Barmpalias, Lewis-Pye, 2017)

Let α be a left-c.e. real and β be a ML random left-c.e. real. Then there exists a constant d such that, for every two monotone increasing approximations $a_0, a_1, \dots \nearrow \alpha$ and $b_0, b_1, \dots \nearrow \beta$, it holds that

$$\lim_{n \to \infty} \frac{\alpha - a_n}{\beta - b_n} = d.$$

In particular, it implies that $\alpha \leq_{S} \beta$. Moreover, d = 0 iff α is ML nonrandom.

Ourline of the proof

Solovay reducibility via translation functions: general frame

Definition (T.)

Let α and β be two reals.

A computable function $f :\subseteq \mathbb{Q} \to \mathbb{Q}$ that fulfills $\mathbb{Q}|_{[0,\beta)} \subseteq \operatorname{dom}(f)$ and $\lim_{q \nearrow \beta} f(q) = \alpha$ is called \mathbb{Q} -translation function from β to α .

A computable function $f :\subseteq \mathbb{R} \to \mathbb{R}$ that fulfills $[0, \beta) \subseteq \operatorname{dom}(f)$ and $\lim_{x \nearrow \beta} f(x) = \alpha$ is called \mathbb{R} -translation function from β to α .

 α is reducible to β via a (Q- or R-)translation function f if there exists a constant c such that

$$\limsup_{\substack{x \nearrow \beta \\ x \in \operatorname{dom}(f)}} \frac{|\alpha - f(x)|}{|\beta - x|} \le c$$

Restricting the set of admissible translation functions, we obtain equivalent characterizations of already known generalizations of Solovay reducibility outside of LEFT-CE; all of them except \leq_{cL}^{loc} coincide with \leq_{s} on LEFT-CE.

- (Solovay, 1975) $\alpha \leq_{\mathbf{S}} \beta$ iff $\alpha \leq_{\mathbf{S}}^* \beta$ via \mathbb{Q} -translation function f with $f(\mathbb{Q}|_{[0,\alpha)}) \subseteq [0,\beta)$;
- (Titov, 2023) $\alpha \leq_{\mathrm{S}}^{\mathrm{m}} \beta$ iff $\alpha \leq_{\mathrm{S}} \beta$ via monotone nondecreasing f;
- (Kumabe, Miyabe, Suzuki, 2024) $\alpha \leq_{cL}^{open} \beta$ iff $\alpha \leq_{S}^{*} \beta$ via \mathbb{R} -translation function f. Moreover, f can be chosen Lipschitz continuous.
- (Kumabe, Miyabe, Mizusawa, Suzuki, 2020) $\alpha \leq_{\mathrm{S}}^{\mathbb{R}}\beta$ iff $\alpha \leq_{\mathrm{cL}}^{\mathrm{open}}\beta$ via \mathbb{R} -translation function f with $(f[0, \alpha)) \subseteq [0, \beta)$. Moreover, f can be chosen Lipschitz continuous and nondecreasing.
- (Kumabe, Miyabe, Suzuki, 2024) $\alpha \leq_{cL}^{loc} \beta$ iff $\alpha \leq_{S}^{\mathbb{R}} \beta$ iff $\alpha \leq_{cL}^{open} \beta$ via \mathbb{R} -translation function f with $[0,1] \subseteq \text{dom}(f)$. Moreover, f can be chosen Lipschitz continuous.

Translation functions and ML-randomness: generalizations

Theorem (T., 2024)

Let α be a real and β be a ML random real. Then there exists a constant d such that, for **monotone nondecreasing** Q-translation function from β to α (if exists), it holds that

$$\lim_{q \nearrow \beta} \frac{\alpha - f(q)}{\beta - q} = d.$$

In particular, it implies that $\alpha \leq_{\mathrm{S}}^{\mathrm{m}} \beta$.

- left differentiability in β .
- The monotonicity requirement cannot be omitted!

Translation functions and ML-randomness: generalizations (NEW)

Similar results can be achieved for other types of admissible translation functions.

Theorem

Let α be a real and β be a ML random real. Then there exists a constant d such that

• For every \mathbb{R} -translation function of bounded variation f from β to α (if exists), it holds that

$$\lim_{n \to \infty} \frac{|\alpha - f(q)|}{|\beta - q|} = d.$$
 (1)

In particular, if such function exists, then $\alpha \leq_{cL}^{open} \beta$. Moreover, if α is Martin-Löf nonrandom, then d = 0.

- For every monotone nondecreasing ℝ-translation function from β to α (if exists),
 (1) holds. In particular, if such function exists, then α≤^m_Sβ. Moreover, if α is Martin-Löf nonrandom, then d = 0.
- For every \mathbb{Q} -translation function of bounded variation f from β to α (if exists), (1) holds.

Corollary

For every real Martin-Löf random real β , the following statements hold

• Every nondecreasing \mathbb{R} -translation function f from β to β satisfies

$$\lim_{x \nearrow \beta} \frac{\beta - f(x)}{\beta - x} = 1.$$
(2)

Every R-translation function f of bounded variation from β to β satisfies (2).

Definition

A left-c.e. is speedable if there exists its increasing computable approximation a_0, a_1, \ldots and a computable index function f, such that $f(n) \ge n$ for all n, and a constant $\rho < 1$ such that

$$\liminf_{n \to \infty} \frac{\alpha - a_{f(n)}}{\alpha - a_n} < \rho$$

- independent of the choice of ρ and a_0, a_1, \ldots ;
- Martin-Löf random left-c.e. reals are nonspeedable but not vice versa (Hölzl, Janicki, 2023)

Theorem

Let β be a left-c.e. real.

Then the following statements are equivalent.

- β is nonspeedable.
- Every nondecreasing \mathbb{R} -translation function f of bounded variation from β to β satisfies (2).

The following statements are also equivalent

- β is Martin-Löf random.
- Every R-translation function of bounded variation f from β to β satisfies (2).

What happens outside of LEFT-CE?

Conjecture

Let α be a real and β be a Schnorr random real. Then there exists a constant d such that, for every \mathbb{R} -translation function from β to α defined on [0, 1], it holds that

$$\lim_{n \to \infty} \frac{|\alpha - f(q)|}{|\beta - q|} = d.$$

In particular, it implies that $\alpha \leq_{cL}^{loc} \beta$.

What about the converse directions?

References

- George Barmpalias and Andrew Lewis-Pye. Differences of halting probabilities. Journal of Computer and System Sciences, 89:349–360 (2017)
- Vasco Brattka, Joseph S. Miller, André Nies. Randomness and Differentiability. *Transactions of the American Mathematical Society*, 368:581–605 (2016)
- Cameron Freer, Bjørn Kjos-Hanssen, André Nies, Frank Stephan Algorithmic aspects of Lipschitz functions, Computability 2014;3(1):45-61.
- Rupert Hölzl and Philip Janicki, *Benign approximations and non-speedability*. Technical report, arXiv:2303.11986v3 (2023).
- Masahiro Kumabe, Kenshi Miyabe, Yuki Mizusawa, and Toshio Suzuki. Solovay reducibility and continuity. Journal of Logic and Analysis, 12(2):1–22 (2020)
- Masahiro Kumabe, Kenshi Miyabe, and Toshio Suzuki. Solovay reducibility via Lipschitz functions and signed-digit representation. *Computability*, vol. Pre-press, no. Pre-press, pp 1–27 (2024)
- Noopur Pathak, Cristóbal Rojas and Stephen G. Simpson Schnorr randomness and the Lebesgue differentiation theorem, Proc. Amer. Math. Soc. 142 (2014), 335–349.
- Marian Pour-El and J. Jan Richards. Computability in analysis and physics. Perspectives in Mathematical Logic, Springer-Verlag, Berlin (1989).
- **I**. T. Extending the Limit Theorem of Barmpalias and Lewis-Pye to all reals. *submitted for further publication* (2024)
- I. T. Variants of Solovay reducibility. accepted by *Computability in Europe 2025* (2025)
- **I**. T. Relative randomness and continuous translation functions. submitted to a conference (2025) *Relative randomness and continuous translation functions*, submitted for publication (2025).